Araştırma Makalesi
BibTex RIS Kaynak Göster

Diamino-sübstitüe Halkalı Trifosfazen Türevlerinin Antimikrobiyal Aktivitelerinin Araştırılması

Yıl 2022, Cilt: 9 Sayı: 1, 385 - 391, 30.06.2022
https://doi.org/10.35193/bseufbd.1063257

Öz

Hekzaklorosiklotrifosfazen [halkalı trimer, (N=PCl3)3, N3P3Cl6)] (1)'in alifatik primer diaminler [NH2-(CH2)n-NH2; n=2, 3 ve 5] ile tepkimelerinden bir mono-spiro (5); bir mono-ansa (10); iki dispiro (6 ve 8); bir spiro-ansa (11); iki tri-spiro (7 ve 9); ve bir tri-bino (12) türevi sentezlendi. Elde edilen fosfazen türevleri (5-12)’nin yapısı uygulanabilir spektroskopik yöntemler ( LC-MS, FT-IR, 1H ve 31P NMR) ile aydınlatıldı. Bileşikler (5-12)’in antimikrobiyal aktivitesi, üç farklı insan patojenine karşı (Escherichia coli W3110, Staphylococcus aureus ATCC 25923 ve Candida albicans ATCC 10231) Minimum İnhibitör Konsantrasyon (MİK) ve Minimum Sidal Konsantrasyon (MSK) değerlerinin belirlenmesi için mikrodilüsyon tekniği kullanılarak incelendi. Elde edilen sonuçlar, fosfazen türevleri (5-12)’nin belirtilen mikroorganizmalara karşı önemli aktivitelere sahip olduğunu gösterdi.

Kaynakça

  • Gleria, M. & Jaeger, R. D. (2004). Applicative Aspects of Cyclophosphazenes, Nova Science, New York, 371.
  • Allcock, H. R. (1972). Phosphorus-Nitrogen Compounds. Academic Press, New York and London, 512.
  • Moriya, K. Masuda T. Yano, S. Suzuki T. Kajiwara M. (1998).31P and 13C NMR Studies of a Liquid-Crystalline Cyclotriphosphazene Derivative: Orientational Characteristics and Contrasting Shielding Anisotropies for Inorganic and Organic Moieties. Mol. Cryst. Liq. Cryst., 318, 267-278.
  • Işıklan, M. Asmafiliz, N. Özalp, E.E. İlter, E. Kılıç, Z. Çoşut, B. Yeşilot, S. Kılıç, A. & Öztürk, A. Hökelek, T. Koç Bilir, L. Y. Açık, L. & Akyüz, E. (2010). Phosphorus−Nitrogen Compounds. 21. Syntheses, Structural Investigations, Biological Activities, and DNA Interactions of New N/O Spirocyclic Phosphazene Derivatives. The NMR Behaviors of Chiral Phosphazenes with Stereogenic Centers upon the Addition of Chiral Solvating Agents. Inorg. Chem., 49, 7057–7071.
  • Erdener Çıralı, D. Uyar, Z. Koyuncu, İ. & Hacıoğlu, N. (2015). Synthesis, characterization and catalytic, cytotoxic and antimicrobial activities of two novel cyclotriphosphazene-based multisite ligands and their Ru(II) complexes. Appl. Organomet. Chem, 29, 536–542.
  • Tümer, Y. Asmafiliz, N. Kılıç, Z. Hökelek, T. Soltanzade, H. Açık, L. Yola, M.L. & Solak, A.O. (2015). Phosphorus–nitrogen compounds: part 30. Syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato-substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes. J. Biol. Inorg. Chem. 20,165–178.
  • Başterzi N.S. Bilge Koçak, S. Okumuş, A. Kılıç, Z. Hökelek, T. Çelik, Ö. Türk, M. Koç, L.Y. Açık, L. Aydın, B. & Dal, H. (2015). Syntheses, structural characterization and biological activities of spiro-ansa-spiro-cyclotriphosphazenes. New J. Chem. 39, 8825–8839.
  • Çil, E. Tanyıldızı, M.A. Özen, F. Boybay, M. Arslan, M. & Görgülü, A.O. (2012). Synthesis, Characterization, and Biological–Pharmacological Evaluation of New Phosphazenes Bearing Dioxybiphenyl and Schiff Base Groups. Arch. Pharm. Chem. Life Sci. 345476–485.
  • Zgoda, J.R. & Porter, J.R. (2001). A Convenient Microdilution Method for Screening Natural Products Against Bacteria and Fungi. Pharm. Biol. 39, 221-225.
  • Asmafiliz, N. Kılıç, Z. Hayvalı, Z. Açık, L. Hökelek, T. Dal, H. & Öner, Y. (2012). Phosphorus–nitrogen compounds. Part 23: Syntheses, structural investigations, biological activities, and DNA interactions of new N/O spirocyclotriphosphazenes. Spectrochim. Acta A Molecular and Biomolecular Spectroscopy.86 214–223.
  • Akbaş, H. Okumuş, A. Kılıç, Z. Hökelek, T. Süzen, Y. Koç, L.Y. Açık, L. & Çelik, Z.B. (2013). Phosphorus-nitrogen compounds: part 27. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing secondary amino and pendant (4-fluorobenzyl)spiro groups. Eur J Med Chem. 70, 294-307.
  • Yıldırım, T. Bilgin, K. Çiftçi, G.Y. Eçik, E.T. Şenkuytu, E. Uludağ, Y. Tomak, L. Kılıç, A. (2012). Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti-cancer agents. Eur. J. Med. Chem. 52, 213-220.
  • Görgülü, A.O. Koran, K. Özen, F. Tekin, S. & Sandal, S. (2015). Synthesis, structural characterization and anti-carcinogenic activity of new cyclotriphosphazenes containing dioxybiphenyl and chalcone groups. J. Mol. Struct. 1087, 1–10.
  • Machakanur, S.S. Patil, B.R. Naik, G.N. Bakale, R.P. Bligh, S.W.A. & Gudasi, K.B. (2014). Synthesis, characterization and antiproliferative activity of hexa arm star shaped thiosemicarbazones derived from cyclotriphosphazene core. Inorg. Chim. Acta 421, 459-464.
  • Siwy, M. Sȩk, D. Kaczmarczyk, B. Wietrzyk, J. Nasulewicz, A. & Opolski, A. (2007). Synthesis and In Vitro Antiproliferative Activity of New 1,3-(Oxytetraethylenoxy)-cyclotriphosphazene Derivatives. Anticancer Res. 27(3B), 1553-1558.
  • Brandt, K. Bartczak, T.J. Kruszynski, R. & Porwolik-Czomperlik, I. (2001). AIDS-related lymphoma screen results and molecular structure determination of a new crown ether bearing aziridinylcyclophosphazene, potentially capable of ion-regulated DNA cleavage action. Inorganica Chimica Acta 322, 138-144.
  • NCCLS. (2003). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 6th ed. NCCLS document M07-A10. NCCLS, Wayne, Pa. 15.
  • Labarre, J.F. Guerch, G. 6 Sournies, F. (1984). Attempts at the prdduition of more selective antitumorals. I. The antineoplastic activity of cyclophosphazenes linked to polyamines 1,3-diaminopropane and 1,4-diaminobutane. J. J. Mol. Struct. 117, 59-72.
  • Sassus, J.L. Graffeuil, M. Castera, P. & Labarre, J.F. (1985). Covalent binding of non-effective diaziridinocyclotriphosphazenes to natural polyamines as tumor finders makes potential anticancer agents. Inorg. Chim. Acta. 108, 23-27.
  • Ture, S. Silah, H. & Tuna, M. (2020). Reinvestigations of the reactions of hexachlorocyclotriphosphazene with difunctional primary amines leading to novel dangler, ansa and bridged derivatives. Spectroscopic studies of the derived products. J. Mol. Struc. 1202, 127232.
  • Siwy, M. Sȩk, D. Kaczmarczyk, B. Jaroszewicz, I. Nasulewicz, A. Pelczyñska, M. Nevozhay, D. & Opolski, A. (2006). Synthesis and in Vitro Antileukemic Activity of Some New 1, 3-(Oxytetraethylenoxy) cyclotriphosphazene Derivatives. Journal of Medicinal Chemistry. 49 (2), 806-810.
  • Huizen, A.A. Wiltig, T. van de Grampel, J.C. Lelieveld, P. van der Meer-Kalverkamp, A. Lamberts, H.B. & Mulder, N.H. (1986). Isomer-dependent cytostatic activity of bis(1-aziridinyl)cyclo-phosphazenes. Med Chem. 29: 1341-1345.
  • Castera, P. Faucher, J.P. Grainer, M. & Labarre, J. F. (1987). Singly, doubly and triply bridged polyazaheterophanes derived from hexachlorocyclotriphosphazene, N3P3Cl6. Phosphorus Sulfur Silicon Relat. Elem. 32, 37-50.
  • Guerch, G. Labarre, J. F. Roques, R. & Sournies, F. (1983). An answer to the spiro versus ansa dilemma in cyclophosphazenes: Part II. N3P3Cl4[HN(CH2)4NH]. J. Mol. Struct. 96: 113-120.
  • Guerch, G. Labarre, J.F. Lahana, R. Roques, R. & Sournies, F. (1983). An answer to the spiro versus ansa dilemma in cyclophosphazenes: Part III. N3P3Cl5[HN(CH2)4NH]Cl5P3N3. A serendipitous two-ring bridged-assembly phosphazene. J. Mol. Struct. 99: 275-282.
  • Castera, P. Faucher, J.P. Guerch, G. Lahana, R. Mahmoun, A. Sournies, F. & Labarre, J.F. (1985). An answer to the SPIRO versus ANSA dilemma in cyclophosphazenes. Part VII. Neither SPIRO nor ANSA: the BINOdicyclotriphosphazenes, N3P3Cl5 [HN(CH2)nNH] Cl5P3N3. Inorg. Chim. Acta, 108, 29-33.
  • Rajeswara Rao, R. Gayatri, G.; Kumar, A. Narahari Sastry, G. & Ravikanth, M. (2009). Cyclotriphosphazene Ring as a Platform for Multiporphyrin Assemblies. Chem. Eur. J. 15, 3488-3496.
  • Davarcı, D. Beşli, S. & Yuksel, F. (2014). Reactions of cyclotriphosphazene with 1,6-diaminohexane and 1,8-diaminooctane: Mono-ansa, double- and triple-bridged derivatives. Polyhedron. 68, 10–16.
  • Ture, S. (2016). Phosphorus-nitrogen compounds: Reinvestigation of the reactions of hexachlorocyclotriphosphazene with 1,4-butane- and 1,6-hexane-diols—NMR studies of the products. Phosphorus Sulfur Silicon Relat. Elem. 191, 1174-1182.
  • Chang F, Huang X, Wei H, Chen K, Shan C, & Tang X. (2014). Intrinsically fluorescent hollow spheres based on organic–inorganic hybrid polyphosphazene material: Synthesis and application in drug release. Mater. Lett. 125, 128–131.
  • Beşli, S. Coles, S.J. Davarcı, D. Davies, D.B. & Yuksel, F. (2011). Effect of chain length on the formation of intramolecular and intermolecular products: Reaction of diols with cyclotriphosphazene. Polyhedron. 30, 329-339.
  • Chandrasekhar, V. Krishnamurthy, S.S. Vasudeva Murthy, A.R. Shaw, R.A.& Woods, M. (1981). Spirocyclic phosphazenes derived from the reaction of N3P3Cl6 and N4P4Cl8 with bifunctional reagents. Inorg. and Nucl. Chem. Letters, 17 (5-6), 181-185.
  • Shaw, R.A. (1989). The reactions of phosphazenes with difunctional and polyfunctional nucleophilic reagents. Phosphorus Sulfur Silicon Rel. Elem. 45, 103-136.
  • Murr El, N. Lahana, R. & Labarre, J.F. (1984). El Murr N, Lahana R, Labarre JF, Declercq JP. (). An answer to the spiro versus ansa dilemma in cyclophosphazenes Part V*. The DISPIRO N3P&12 [HN-(CH2)3,4-NH] 2 and TRISPIRO N3P3 [HN-(CH,),-NH] 3 derivatives . J Mol Struct. 117, 73-85.
  • İlter, E. Asmafiliz, N. Kılıç, Z. Açık, L. Yavuz, M. Bali, E.B. Solak, A.O. Buyükkaya, F. Dal, H. Hökelek, T. (2010). Phosphorus–nitrogen compounds: Part 19. Syntheses, structural and electrochemical investigations, biological activities, and DNA interactions of new spirocyclic monoferrocenylcyclotriphosphazenes. Polyhedron, 29, 2933–2944.
  • Ozay, H. & Ozay, O. (2014). Synthesis and characterization of drug microspheres containing phosphazene for biomedical applications. Colloids Surf. A Physicochem. Eng. Asp. 450, 99–105.
  • Greish, Y.E. Benderb, J.D. Lakshmic, S. Browna, P.W. Allcock, H.R. & Laurencinc, C. T. (2005). Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications. Biomaterials. 26, 1-9.

The Investigation of Antimicrobial Activities of Diamino-substituted Cyclotriphosphazene Derivatives

Yıl 2022, Cilt: 9 Sayı: 1, 385 - 391, 30.06.2022
https://doi.org/10.35193/bseufbd.1063257

Öz

From the reactions of hexachlorocyclotriphosphazene [cyclic trimer, (N=PCl3)3, N3P3Cl6)] (1)with aliphatic primary diamines, [NH2-(CH2)n-NH2; n=2, 3 and 5],one mono-spiro (5); a mono-ansa (10); two dispiro (6 and 8); a spiro-ansa (11); two tri-spiro (7 and 9); and a tri-bino (12) derivatives were synthesized. The structure of the obtained phosphazene derivatives (5-12) was elucidated by applicable spectroscopic methods (LC-MS, FT-IR, 1H and 31P NMR). The antimicrobial activities of the synthesized compounds were investigated using microdilution technique to determine Minimum Inhibitory Concentration (MIC) and Minimum Cidal Concentration (MCC) values against three different human pathogens (Escherichia coli W3110, Staphylococcus aureus ATCC 25923 and Candida albicans ATCC 10231). The obtained results showed that phosphazene derivatives (5-12) had significant activities against the mentioned microorganisms.

Kaynakça

  • Gleria, M. & Jaeger, R. D. (2004). Applicative Aspects of Cyclophosphazenes, Nova Science, New York, 371.
  • Allcock, H. R. (1972). Phosphorus-Nitrogen Compounds. Academic Press, New York and London, 512.
  • Moriya, K. Masuda T. Yano, S. Suzuki T. Kajiwara M. (1998).31P and 13C NMR Studies of a Liquid-Crystalline Cyclotriphosphazene Derivative: Orientational Characteristics and Contrasting Shielding Anisotropies for Inorganic and Organic Moieties. Mol. Cryst. Liq. Cryst., 318, 267-278.
  • Işıklan, M. Asmafiliz, N. Özalp, E.E. İlter, E. Kılıç, Z. Çoşut, B. Yeşilot, S. Kılıç, A. & Öztürk, A. Hökelek, T. Koç Bilir, L. Y. Açık, L. & Akyüz, E. (2010). Phosphorus−Nitrogen Compounds. 21. Syntheses, Structural Investigations, Biological Activities, and DNA Interactions of New N/O Spirocyclic Phosphazene Derivatives. The NMR Behaviors of Chiral Phosphazenes with Stereogenic Centers upon the Addition of Chiral Solvating Agents. Inorg. Chem., 49, 7057–7071.
  • Erdener Çıralı, D. Uyar, Z. Koyuncu, İ. & Hacıoğlu, N. (2015). Synthesis, characterization and catalytic, cytotoxic and antimicrobial activities of two novel cyclotriphosphazene-based multisite ligands and their Ru(II) complexes. Appl. Organomet. Chem, 29, 536–542.
  • Tümer, Y. Asmafiliz, N. Kılıç, Z. Hökelek, T. Soltanzade, H. Açık, L. Yola, M.L. & Solak, A.O. (2015). Phosphorus–nitrogen compounds: part 30. Syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato-substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes. J. Biol. Inorg. Chem. 20,165–178.
  • Başterzi N.S. Bilge Koçak, S. Okumuş, A. Kılıç, Z. Hökelek, T. Çelik, Ö. Türk, M. Koç, L.Y. Açık, L. Aydın, B. & Dal, H. (2015). Syntheses, structural characterization and biological activities of spiro-ansa-spiro-cyclotriphosphazenes. New J. Chem. 39, 8825–8839.
  • Çil, E. Tanyıldızı, M.A. Özen, F. Boybay, M. Arslan, M. & Görgülü, A.O. (2012). Synthesis, Characterization, and Biological–Pharmacological Evaluation of New Phosphazenes Bearing Dioxybiphenyl and Schiff Base Groups. Arch. Pharm. Chem. Life Sci. 345476–485.
  • Zgoda, J.R. & Porter, J.R. (2001). A Convenient Microdilution Method for Screening Natural Products Against Bacteria and Fungi. Pharm. Biol. 39, 221-225.
  • Asmafiliz, N. Kılıç, Z. Hayvalı, Z. Açık, L. Hökelek, T. Dal, H. & Öner, Y. (2012). Phosphorus–nitrogen compounds. Part 23: Syntheses, structural investigations, biological activities, and DNA interactions of new N/O spirocyclotriphosphazenes. Spectrochim. Acta A Molecular and Biomolecular Spectroscopy.86 214–223.
  • Akbaş, H. Okumuş, A. Kılıç, Z. Hökelek, T. Süzen, Y. Koç, L.Y. Açık, L. & Çelik, Z.B. (2013). Phosphorus-nitrogen compounds: part 27. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing secondary amino and pendant (4-fluorobenzyl)spiro groups. Eur J Med Chem. 70, 294-307.
  • Yıldırım, T. Bilgin, K. Çiftçi, G.Y. Eçik, E.T. Şenkuytu, E. Uludağ, Y. Tomak, L. Kılıç, A. (2012). Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti-cancer agents. Eur. J. Med. Chem. 52, 213-220.
  • Görgülü, A.O. Koran, K. Özen, F. Tekin, S. & Sandal, S. (2015). Synthesis, structural characterization and anti-carcinogenic activity of new cyclotriphosphazenes containing dioxybiphenyl and chalcone groups. J. Mol. Struct. 1087, 1–10.
  • Machakanur, S.S. Patil, B.R. Naik, G.N. Bakale, R.P. Bligh, S.W.A. & Gudasi, K.B. (2014). Synthesis, characterization and antiproliferative activity of hexa arm star shaped thiosemicarbazones derived from cyclotriphosphazene core. Inorg. Chim. Acta 421, 459-464.
  • Siwy, M. Sȩk, D. Kaczmarczyk, B. Wietrzyk, J. Nasulewicz, A. & Opolski, A. (2007). Synthesis and In Vitro Antiproliferative Activity of New 1,3-(Oxytetraethylenoxy)-cyclotriphosphazene Derivatives. Anticancer Res. 27(3B), 1553-1558.
  • Brandt, K. Bartczak, T.J. Kruszynski, R. & Porwolik-Czomperlik, I. (2001). AIDS-related lymphoma screen results and molecular structure determination of a new crown ether bearing aziridinylcyclophosphazene, potentially capable of ion-regulated DNA cleavage action. Inorganica Chimica Acta 322, 138-144.
  • NCCLS. (2003). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 6th ed. NCCLS document M07-A10. NCCLS, Wayne, Pa. 15.
  • Labarre, J.F. Guerch, G. 6 Sournies, F. (1984). Attempts at the prdduition of more selective antitumorals. I. The antineoplastic activity of cyclophosphazenes linked to polyamines 1,3-diaminopropane and 1,4-diaminobutane. J. J. Mol. Struct. 117, 59-72.
  • Sassus, J.L. Graffeuil, M. Castera, P. & Labarre, J.F. (1985). Covalent binding of non-effective diaziridinocyclotriphosphazenes to natural polyamines as tumor finders makes potential anticancer agents. Inorg. Chim. Acta. 108, 23-27.
  • Ture, S. Silah, H. & Tuna, M. (2020). Reinvestigations of the reactions of hexachlorocyclotriphosphazene with difunctional primary amines leading to novel dangler, ansa and bridged derivatives. Spectroscopic studies of the derived products. J. Mol. Struc. 1202, 127232.
  • Siwy, M. Sȩk, D. Kaczmarczyk, B. Jaroszewicz, I. Nasulewicz, A. Pelczyñska, M. Nevozhay, D. & Opolski, A. (2006). Synthesis and in Vitro Antileukemic Activity of Some New 1, 3-(Oxytetraethylenoxy) cyclotriphosphazene Derivatives. Journal of Medicinal Chemistry. 49 (2), 806-810.
  • Huizen, A.A. Wiltig, T. van de Grampel, J.C. Lelieveld, P. van der Meer-Kalverkamp, A. Lamberts, H.B. & Mulder, N.H. (1986). Isomer-dependent cytostatic activity of bis(1-aziridinyl)cyclo-phosphazenes. Med Chem. 29: 1341-1345.
  • Castera, P. Faucher, J.P. Grainer, M. & Labarre, J. F. (1987). Singly, doubly and triply bridged polyazaheterophanes derived from hexachlorocyclotriphosphazene, N3P3Cl6. Phosphorus Sulfur Silicon Relat. Elem. 32, 37-50.
  • Guerch, G. Labarre, J. F. Roques, R. & Sournies, F. (1983). An answer to the spiro versus ansa dilemma in cyclophosphazenes: Part II. N3P3Cl4[HN(CH2)4NH]. J. Mol. Struct. 96: 113-120.
  • Guerch, G. Labarre, J.F. Lahana, R. Roques, R. & Sournies, F. (1983). An answer to the spiro versus ansa dilemma in cyclophosphazenes: Part III. N3P3Cl5[HN(CH2)4NH]Cl5P3N3. A serendipitous two-ring bridged-assembly phosphazene. J. Mol. Struct. 99: 275-282.
  • Castera, P. Faucher, J.P. Guerch, G. Lahana, R. Mahmoun, A. Sournies, F. & Labarre, J.F. (1985). An answer to the SPIRO versus ANSA dilemma in cyclophosphazenes. Part VII. Neither SPIRO nor ANSA: the BINOdicyclotriphosphazenes, N3P3Cl5 [HN(CH2)nNH] Cl5P3N3. Inorg. Chim. Acta, 108, 29-33.
  • Rajeswara Rao, R. Gayatri, G.; Kumar, A. Narahari Sastry, G. & Ravikanth, M. (2009). Cyclotriphosphazene Ring as a Platform for Multiporphyrin Assemblies. Chem. Eur. J. 15, 3488-3496.
  • Davarcı, D. Beşli, S. & Yuksel, F. (2014). Reactions of cyclotriphosphazene with 1,6-diaminohexane and 1,8-diaminooctane: Mono-ansa, double- and triple-bridged derivatives. Polyhedron. 68, 10–16.
  • Ture, S. (2016). Phosphorus-nitrogen compounds: Reinvestigation of the reactions of hexachlorocyclotriphosphazene with 1,4-butane- and 1,6-hexane-diols—NMR studies of the products. Phosphorus Sulfur Silicon Relat. Elem. 191, 1174-1182.
  • Chang F, Huang X, Wei H, Chen K, Shan C, & Tang X. (2014). Intrinsically fluorescent hollow spheres based on organic–inorganic hybrid polyphosphazene material: Synthesis and application in drug release. Mater. Lett. 125, 128–131.
  • Beşli, S. Coles, S.J. Davarcı, D. Davies, D.B. & Yuksel, F. (2011). Effect of chain length on the formation of intramolecular and intermolecular products: Reaction of diols with cyclotriphosphazene. Polyhedron. 30, 329-339.
  • Chandrasekhar, V. Krishnamurthy, S.S. Vasudeva Murthy, A.R. Shaw, R.A.& Woods, M. (1981). Spirocyclic phosphazenes derived from the reaction of N3P3Cl6 and N4P4Cl8 with bifunctional reagents. Inorg. and Nucl. Chem. Letters, 17 (5-6), 181-185.
  • Shaw, R.A. (1989). The reactions of phosphazenes with difunctional and polyfunctional nucleophilic reagents. Phosphorus Sulfur Silicon Rel. Elem. 45, 103-136.
  • Murr El, N. Lahana, R. & Labarre, J.F. (1984). El Murr N, Lahana R, Labarre JF, Declercq JP. (). An answer to the spiro versus ansa dilemma in cyclophosphazenes Part V*. The DISPIRO N3P&12 [HN-(CH2)3,4-NH] 2 and TRISPIRO N3P3 [HN-(CH,),-NH] 3 derivatives . J Mol Struct. 117, 73-85.
  • İlter, E. Asmafiliz, N. Kılıç, Z. Açık, L. Yavuz, M. Bali, E.B. Solak, A.O. Buyükkaya, F. Dal, H. Hökelek, T. (2010). Phosphorus–nitrogen compounds: Part 19. Syntheses, structural and electrochemical investigations, biological activities, and DNA interactions of new spirocyclic monoferrocenylcyclotriphosphazenes. Polyhedron, 29, 2933–2944.
  • Ozay, H. & Ozay, O. (2014). Synthesis and characterization of drug microspheres containing phosphazene for biomedical applications. Colloids Surf. A Physicochem. Eng. Asp. 450, 99–105.
  • Greish, Y.E. Benderb, J.D. Lakshmic, S. Browna, P.W. Allcock, H.R. & Laurencinc, C. T. (2005). Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications. Biomaterials. 26, 1-9.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Gülçin Çetin Kılıçaslan 0000-0002-9625-224X

Cihan Darcan 0000-0003-0205-3774

Necibe Kılıçer 0000-0003-4037-7729

Sedat Ture 0000-0001-8637-5580

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 26 Ocak 2022
Kabul Tarihi 6 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 1

Kaynak Göster

APA Çetin Kılıçaslan, G., Darcan, C., Kılıçer, N., Ture, S. (2022). Diamino-sübstitüe Halkalı Trifosfazen Türevlerinin Antimikrobiyal Aktivitelerinin Araştırılması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 385-391. https://doi.org/10.35193/bseufbd.1063257