Derleme
BibTex RIS Kaynak Göster

Kardiyovasküler Hastalıklar için Yeni Epigenetik Belirteçler: Dairesel RNA'lar

Yıl 2021, Cilt: 4 Sayı: 2, 189 - 196, 01.05.2021
https://doi.org/10.19127/bshealthscience.871765

Öz

Kardiyovasküler hastalık (KVH)’lar, dünyada yüksek morbidite ve mortaliteye neden olurlar. Son araştırmalar, KVH patogenezinde dairesel RNA (circRNA)'ların fonksiyonlarına odaklanmıştır. CircRNA'lar, kovalent olarak kapalı halkasal yapıya sahip, dokuya ve gelişimsel aşamaya özgü farklı ifade/ekspresyon profili olan kodlama yapmayan RNA (ncRNA)'lardır. Serbest uçlarının
olmaması, doğrusal transkriptlerle karşılaştırıldığında daha fazla stabilite sağladığından, circRNA’lar gelecekte ideal terapötik hedef adaylarıdır. Bu çalışmada circRNA'ların biyogenezi, biyolojik özellikleri ve KVH patogenezindeki etki mekanizmaları ile ifade düzeyleri derlenmiştir. Yapılan çalışmalar circRNA'ların KVH'nin ilerlemesinde yakından rol oynadığını ve KVH için umut verici biyobelirteçler olabileceğini doğrulamıştır. Bu bulgular gelecekte KVH'nin önlenmesi, teşhisi ve terapötik müdahalesi için yeni bir yol sağlayabilir.

Kaynakça

  • Aaronson KD, Sackner-Bernstein J. 2006. Risk of death associated with nesiritide in patients with acutely decompensated heart failure. JAMA, 296: 1465-1466.
  • AbouHaidar MG, Venkataraman S, Golshani A, Liu BL, Ahmad T. 2014. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc Natl Acad Sci USA, 111: 14542-14547.
  • Altesha MA, Ni T, Khan A, Liu K, Zheng X. 2018. Circular RNA in Cardiovascular Disease. J Cellular Phys, 234: 5588-5600.
  • Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M. 2014. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 56: 55-66.
  • Aufiero S, Reckman YJ, Pinto YM, Creemers EE. 2019. Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol, 16: 503-514.
  • Bao X, Zheng S, Mao S, Gu T, Liu S, Sun J. 2018. A potential risk factor of essential hypertension in case-control study: Circular RNA hsa_circ_0037911. Biochem Biophys Res Commun, 498: 789-794.
  • Cai L, Qi B, Wu X, Peng S, Zhou G, Wei Y. 2019. Circular RNA Ttc3 regulates cardiac function after myocardial infarction by sponging miR-15b. J Mol Cell Cardiol, 130: 10-22.
  • Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P. 1993. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell, 73: 1019-1030.
  • Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K. 2008. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 18: 997-1006.
  • Chen J, Zou Q, Lv D, Wei Y, Raza MA, Chen Y. 2018. Comprehensive transcriptional landscape of porcine cardiac and skeletal muscles reveals differences of aging. Oncotarget, 9: 1524-1541.
  • Cocquerelle C, Daubersies P, Majerus MA, Kerckaert JP, Bailleul B. 1992. Splicing with inverted order of exons occurs proximal to large introns. EMBO J, 11: 1095-1098.
  • Cocquerelle C, Mascrez B, Hetuin D, Bailleul B. 1993. Mis-splicing yields circular RNA molecules. FASEB J, 7: 155-160.
  • Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA. 2015. The RNA binding protein quaking regulates formation of circRNAs. Cell, 160: 1125-1134.
  • Cortés‐López M, Gruner MR, Cooper DA, Gruner HN, Voda AI, van der Linden AM, Miura P. 2018. Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics, 19: 8.
  • Dang RY, Liu FL, Li Y. 2017. Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR- 186/HIF-1alpha axis. Biochem Biophys Res Commun, 490: 104-110.
  • Devaux Y, Creemers EE, Boon RA, Werfel S, Thum T, Engelhardt S, Squire I. 2017. Circular RNAs in heart failure. European J Heart Failure, 19: 701-709.
  • Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. 2016. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucl Acids Res, 44: 2846-2858.
  • Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, Yang BB. 2017. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death and Differ, 24: 357-370.
  • Fan X, Weng X, Zhao Y, Chen W, Gan T, Xu D. 2017. Circular RNAs in cardiovascular disease: An overview. BioMed Res Int, 2017: 5135781-5135789.
  • Geng HH, Li R, Su YM, Xiao J, Pan M, Cai XX. 2016. The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One, 11: e0151753.
  • Gupta SK, Garg A, Bar C, Chatterjee S, Foinquinos A, Milting H. 2018. Quaking inhibits doxorubicin-mediated cardiotoxicity through regulation of cardiac circular RNA expression. Circ Res, 122: 246-254.
  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. 2013. Natural RNA circles function as efficient microRNA sponges. Nature, 495: 384-388.
  • Hansen TB, Venø MT, Damgaard CK, Kjems J. 2016. Comparison of circular RNA prediction tools. Nucleic Acids Res, 44: e58-e58.
  • Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W. 2016. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun, 7: 12429.
  • Jakobi T, Czaja-Hasse LF, Reinhardt R, Dieterich C. 2016. Profiling and validation of the circular RNA repertoire in adult murine hearts. Genom Proteom Bioinf, 14: 216-223.
  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu JZ. 2013. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19: 141-157.
  • Jeck WR, Sharpless NE. 2014. Detecting and characterizing circular RNAs. Nat Biotechnol, 32: 453-461.
  • Jin QF, Chen YY. 2019. Silencing circular RNA circ_0010729 protects human cardiomyocytes from oxygen-glucose deprivation-induced injury by up-regulating microRNA-145-5p. Mol. Cell Biochem, 462: 185-194.
  • Kolakofsky D. 1976. Isolation and characterization of Sendai virus DI-RNAs. Cell, 8: 547-555.
  • Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K. 2008. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol, 141: 672-675.
  • Li ZY, Huang C, Bao C, Chen L, Lin M, Wang XL. 2015. Exonintron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 22: 256-264.
  • Li CY, Ma L, Yu B. 2017. Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis. Biomed Pharmacother, 95: 1514-1519.
  • Li YS, Zhang JW, Huo CQ, Ding N, Li JY, Xiao J. 2017. Dynamic organization of lncrna and circular rna regulators collectively controlled cardiac differentiation in humans. Ebiomedicine, 24: 137-146.
  • Li M, Ding W, Sun T, Tariq MA, Xu T, Li P, Wang J. 2018. Biogenesis of circular RNAs and their roles in cardiovascular development and pathology. The FEBS Journal, 285: 220-232.
  • Lim TB, Aliwarga E, Luu TDA, Li YP, Ng SL, Annadoray L. 2019. Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy. Cardiovasc Res, 115: 1998-2007.
  • Lim TB, Lavenniah A, Foo RS. 2020. Circles in the heart and cardiovascular system. Cardiovasc Res, 116: 269-278.
  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Rajewsky N. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495: 333-338.
  • Meng ZY, Chen C, Cao HL, Wang JY, Shen E. 2019. Whole transcriptome sequencing reveals biologically significant RNA markers and related regulating biological pathways in cardiomyocyte hypertrophy induced by high glucose. J Cell Biochem, 120: 1018-1027.
  • Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J. 1998. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 93: 215-228.
  • Ni H, Li W, Zhuge Y, Xu S, Wang Y, Chen Y. 2019. Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. Int J Cardiol, 292: 188-196.
  • Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD. 1991. Scrambled exons. Cell, 64: 607-613.
  • Pan RY, Liu P, Zhou HT, Sun WX, Song J, Shu J. 2017. Circular RNAs promote TRPM3 expression by inhibiting hsa-miR-130a-3p in coronary artery disease patients. Oncotarget, 8: 60280-60290.
  • Panda AC, De S, Grammatikakis I, Munk R, Yang X, Piao Y, Gorospe M. 2017. High‐purity circular RNA is DOI: 10.1093/nar/ gkx297olation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res, 45: e116-e116.
  • Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. 2007. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev, 12: 331-343.
  • Schroeder R, Breitenbach M, Schweyen RJ. 1983. Mitochondrial circular RNAs are absent in sporulating cells of Saccharomyces cerevisiae. Nucl Acids Res, 11: 1735-1746.
  • Shan K, Liu C, Liu BH, Chen X, Dong R, Liu X. 2017. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation, 136: 1629-1642.
  • Siede D, Rapti K, Gorska AA, Katus HA, Altmuller J, Boeckel JN. 2017. Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease. J Mol Cell Cardiol, 109: 48-56.
  • Sonnenschein K, Wilczek AL, de Gonzalo-Calvo D, Pfanne A, Derda AA, Zwadlo C. 2019. Serum circular RNAs act as blood-based biomarkers for hypertrophic obstructive cardiomyopathy. Sci Rep, 9: 20350.
  • Sun Y, Jiang X, Lv Y, Liang X, Zhao B, Bian W. 2020. Circular rna expression profiles in plasma from patients with heart failure related to platelet activity. Biomolecules, 10: 187.
  • Suzuki H, Zuo YH, Wang JH, Zhang MQ, Malhotra A, Mayeda A. 2006. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucl Acids Res, 34: e63.
  • Tan WL, Lim BT, Anene-Nzelu CG, Ackers-Johnson M, Dashi A, See K. 2017. A landscape of circular RNA expression in the human heart. Cardiov Res, 113: 298-309.
  • Wang H, Yang J, Yang J, Fan Z, Yang C. 2016. Circular RNAs: Novel rising stars in cardiovascular disease research. Int J Cardiol, 202: 726-727.
  • Wang S, Chen JY, Yu WQ, Deng F. 2019a. Circular RNA DLGAP4 ameliorates cardiomyocyte apoptosis through regulating BCL2 via targeting miR-143 in myocardial ischemia-reperfusion injury. Int J Cardiol, 279: 147-147.
  • Wang L, Shen C, Wang Y, Zou T, Zhu H, Lu X. 2019b. Identification of circular RNA Hsa_circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis, 286: 88-96.
  • Werfel S, Nothjunge S, Schwarzmayr T, Strom TM, Meitinger T, Engelhardt S. 2016. Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol, 98: 103-107.
  • Wu JH, Li JQ, Liu H, Yin JW, Zhang MJ, Yu ZB. 2019. Circulating plasma circular RNAs as novel diagnostic biomarkers for congenital heart disease in children. J Clin Lab Anal, 33: e22998.
  • Xu TY, Wu J, Han P, Zhao ZM, Song XF. 2017. Circular RNA expression profiles and features in human tissues: a study using RNA-seq data. Bmc Genom, 18: 680.
  • Vausort M, Salgado-Somoza A, Zhang L, Leszek P, Scholz M, Teren A. 2016. Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. J Am Coll Cardiol, 68: 1247-1248.
  • Vilades D, Martinez-Camblor P, Ferrero-Gregori A, Bar C, Lu DC, Xiao K. 2020. Plasma circular RNA hsa_circ_0001445 and coronary artery disease: performance as a biomarker. Faseb J, 34: 4403-4414.
  • Zeng X, Lin W, Guo M, Zou Q. 2017. A comprehensive overview and evaluation of circular RNA detection tools. PLOS Comput Biol, 13: e1005420.
  • Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH. 2013. Circular intronic long noncoding RNAs. Mol Cell, 51: 792-806.
  • Zhang XO, Wang HB, Zhang Y, Lu XH, Chen LL, Yang L. 2014. Complementary sequence-mediated exon circularization. Cell, 159: 134-147.
  • Zhang J, Xu YL, Xu S, Liu Y, Yu LM, Li Z. 2018. Plasma circular RNAs, Hsa_circRNA_025016, predict postoperative atrial fibrillation after isolated off-pump coronary artery bypass grafting. J Am Heart Assoc, 7: e006642.
  • Zhang L, Zhang Y, Zhao YF, Wang Y, Ding H, Xue S. 2018. Circulating miRNAs as biomarkers for early diagnosis of coronary artery disease. Expert Opin Ther Pat, 28: 591-601.
  • Zhang L, Zhang Y, Wang Y, Zhao Y, Ding H, Li P. 2020. Circular RNAs: Functions and clinical significance in cardiovascular disease. Front Cell Dev Biol, 8: 584051.
  • Zhang Q, Sun WX, Han J, Cheng SY, Yu P, Shen L. 2020. The circular RNA hsa_circ_0007623 acts as a sponge of microRNA-297 and promotes cardiac repair. Biochem Biophys Res Co, 523: 993-1000.
  • Zheng C, Niu H, Li M, Zhang H, Yang Z, Tian L. 2015. Cyclic RNA hsacirc000595 regulates apoptosis of aortic smooth muscle cells. Mol Med Rep, 12: 6656-6662.
  • Zheng QP, Bao CY, Guo WJ, Li SY, Chen J, Chen B. 2016. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun, 7: 11215.
  • Zhou B, Yu JW. 2017. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-beta 1. Biochem Biophys Res Commun, 487: 769-775.
  • Zou M, Huang C, Li X, He X, Chen Y, Liao W. 2017. Circular RNA expression profile and potential function of hsa_circRNA_101238 in human thoracic aortic dissection. Oncotarget, 8: 81825-81837.

New Epigenetic Markers for Cardiovascular Diseases: Circular RNAs

Yıl 2021, Cilt: 4 Sayı: 2, 189 - 196, 01.05.2021
https://doi.org/10.19127/bshealthscience.871765

Öz

Cardiovascular disease causes high morbidity and mortality in the world. Recent researches have focused on the functions of circular RNAs (circRNAs) in KVH pathogenesis. CircRNAs are noncoding RNAs (ncRNAs) that have a covalently closed ring structure, tissue and developmental stage specific different expression profile. Since the absence of free ends provides greater stability compared to linear transcripts, circRNAs are ideal biomarkers and therapeutic target candidates in the future. In this study, the biogenesis and biological properties of circRNAs, their mechanisms of action and expression levels in KVH pathogenesis were reviewed. Studies have confirmed that circRNAs play a role in the progression of CVD and can be promising biomarkers for CVD. These findings may provide a new avenue for CVD prevention, diagnosis, and therapeutic intervention in future.

Kaynakça

  • Aaronson KD, Sackner-Bernstein J. 2006. Risk of death associated with nesiritide in patients with acutely decompensated heart failure. JAMA, 296: 1465-1466.
  • AbouHaidar MG, Venkataraman S, Golshani A, Liu BL, Ahmad T. 2014. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc Natl Acad Sci USA, 111: 14542-14547.
  • Altesha MA, Ni T, Khan A, Liu K, Zheng X. 2018. Circular RNA in Cardiovascular Disease. J Cellular Phys, 234: 5588-5600.
  • Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M. 2014. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 56: 55-66.
  • Aufiero S, Reckman YJ, Pinto YM, Creemers EE. 2019. Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol, 16: 503-514.
  • Bao X, Zheng S, Mao S, Gu T, Liu S, Sun J. 2018. A potential risk factor of essential hypertension in case-control study: Circular RNA hsa_circ_0037911. Biochem Biophys Res Commun, 498: 789-794.
  • Cai L, Qi B, Wu X, Peng S, Zhou G, Wei Y. 2019. Circular RNA Ttc3 regulates cardiac function after myocardial infarction by sponging miR-15b. J Mol Cell Cardiol, 130: 10-22.
  • Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P. 1993. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell, 73: 1019-1030.
  • Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K. 2008. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 18: 997-1006.
  • Chen J, Zou Q, Lv D, Wei Y, Raza MA, Chen Y. 2018. Comprehensive transcriptional landscape of porcine cardiac and skeletal muscles reveals differences of aging. Oncotarget, 9: 1524-1541.
  • Cocquerelle C, Daubersies P, Majerus MA, Kerckaert JP, Bailleul B. 1992. Splicing with inverted order of exons occurs proximal to large introns. EMBO J, 11: 1095-1098.
  • Cocquerelle C, Mascrez B, Hetuin D, Bailleul B. 1993. Mis-splicing yields circular RNA molecules. FASEB J, 7: 155-160.
  • Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA. 2015. The RNA binding protein quaking regulates formation of circRNAs. Cell, 160: 1125-1134.
  • Cortés‐López M, Gruner MR, Cooper DA, Gruner HN, Voda AI, van der Linden AM, Miura P. 2018. Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics, 19: 8.
  • Dang RY, Liu FL, Li Y. 2017. Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR- 186/HIF-1alpha axis. Biochem Biophys Res Commun, 490: 104-110.
  • Devaux Y, Creemers EE, Boon RA, Werfel S, Thum T, Engelhardt S, Squire I. 2017. Circular RNAs in heart failure. European J Heart Failure, 19: 701-709.
  • Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. 2016. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucl Acids Res, 44: 2846-2858.
  • Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, Yang BB. 2017. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death and Differ, 24: 357-370.
  • Fan X, Weng X, Zhao Y, Chen W, Gan T, Xu D. 2017. Circular RNAs in cardiovascular disease: An overview. BioMed Res Int, 2017: 5135781-5135789.
  • Geng HH, Li R, Su YM, Xiao J, Pan M, Cai XX. 2016. The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One, 11: e0151753.
  • Gupta SK, Garg A, Bar C, Chatterjee S, Foinquinos A, Milting H. 2018. Quaking inhibits doxorubicin-mediated cardiotoxicity through regulation of cardiac circular RNA expression. Circ Res, 122: 246-254.
  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. 2013. Natural RNA circles function as efficient microRNA sponges. Nature, 495: 384-388.
  • Hansen TB, Venø MT, Damgaard CK, Kjems J. 2016. Comparison of circular RNA prediction tools. Nucleic Acids Res, 44: e58-e58.
  • Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W. 2016. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun, 7: 12429.
  • Jakobi T, Czaja-Hasse LF, Reinhardt R, Dieterich C. 2016. Profiling and validation of the circular RNA repertoire in adult murine hearts. Genom Proteom Bioinf, 14: 216-223.
  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu JZ. 2013. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19: 141-157.
  • Jeck WR, Sharpless NE. 2014. Detecting and characterizing circular RNAs. Nat Biotechnol, 32: 453-461.
  • Jin QF, Chen YY. 2019. Silencing circular RNA circ_0010729 protects human cardiomyocytes from oxygen-glucose deprivation-induced injury by up-regulating microRNA-145-5p. Mol. Cell Biochem, 462: 185-194.
  • Kolakofsky D. 1976. Isolation and characterization of Sendai virus DI-RNAs. Cell, 8: 547-555.
  • Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K. 2008. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol, 141: 672-675.
  • Li ZY, Huang C, Bao C, Chen L, Lin M, Wang XL. 2015. Exonintron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 22: 256-264.
  • Li CY, Ma L, Yu B. 2017. Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis. Biomed Pharmacother, 95: 1514-1519.
  • Li YS, Zhang JW, Huo CQ, Ding N, Li JY, Xiao J. 2017. Dynamic organization of lncrna and circular rna regulators collectively controlled cardiac differentiation in humans. Ebiomedicine, 24: 137-146.
  • Li M, Ding W, Sun T, Tariq MA, Xu T, Li P, Wang J. 2018. Biogenesis of circular RNAs and their roles in cardiovascular development and pathology. The FEBS Journal, 285: 220-232.
  • Lim TB, Aliwarga E, Luu TDA, Li YP, Ng SL, Annadoray L. 2019. Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy. Cardiovasc Res, 115: 1998-2007.
  • Lim TB, Lavenniah A, Foo RS. 2020. Circles in the heart and cardiovascular system. Cardiovasc Res, 116: 269-278.
  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Rajewsky N. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495: 333-338.
  • Meng ZY, Chen C, Cao HL, Wang JY, Shen E. 2019. Whole transcriptome sequencing reveals biologically significant RNA markers and related regulating biological pathways in cardiomyocyte hypertrophy induced by high glucose. J Cell Biochem, 120: 1018-1027.
  • Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J. 1998. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 93: 215-228.
  • Ni H, Li W, Zhuge Y, Xu S, Wang Y, Chen Y. 2019. Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. Int J Cardiol, 292: 188-196.
  • Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD. 1991. Scrambled exons. Cell, 64: 607-613.
  • Pan RY, Liu P, Zhou HT, Sun WX, Song J, Shu J. 2017. Circular RNAs promote TRPM3 expression by inhibiting hsa-miR-130a-3p in coronary artery disease patients. Oncotarget, 8: 60280-60290.
  • Panda AC, De S, Grammatikakis I, Munk R, Yang X, Piao Y, Gorospe M. 2017. High‐purity circular RNA is DOI: 10.1093/nar/ gkx297olation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res, 45: e116-e116.
  • Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. 2007. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev, 12: 331-343.
  • Schroeder R, Breitenbach M, Schweyen RJ. 1983. Mitochondrial circular RNAs are absent in sporulating cells of Saccharomyces cerevisiae. Nucl Acids Res, 11: 1735-1746.
  • Shan K, Liu C, Liu BH, Chen X, Dong R, Liu X. 2017. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation, 136: 1629-1642.
  • Siede D, Rapti K, Gorska AA, Katus HA, Altmuller J, Boeckel JN. 2017. Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease. J Mol Cell Cardiol, 109: 48-56.
  • Sonnenschein K, Wilczek AL, de Gonzalo-Calvo D, Pfanne A, Derda AA, Zwadlo C. 2019. Serum circular RNAs act as blood-based biomarkers for hypertrophic obstructive cardiomyopathy. Sci Rep, 9: 20350.
  • Sun Y, Jiang X, Lv Y, Liang X, Zhao B, Bian W. 2020. Circular rna expression profiles in plasma from patients with heart failure related to platelet activity. Biomolecules, 10: 187.
  • Suzuki H, Zuo YH, Wang JH, Zhang MQ, Malhotra A, Mayeda A. 2006. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucl Acids Res, 34: e63.
  • Tan WL, Lim BT, Anene-Nzelu CG, Ackers-Johnson M, Dashi A, See K. 2017. A landscape of circular RNA expression in the human heart. Cardiov Res, 113: 298-309.
  • Wang H, Yang J, Yang J, Fan Z, Yang C. 2016. Circular RNAs: Novel rising stars in cardiovascular disease research. Int J Cardiol, 202: 726-727.
  • Wang S, Chen JY, Yu WQ, Deng F. 2019a. Circular RNA DLGAP4 ameliorates cardiomyocyte apoptosis through regulating BCL2 via targeting miR-143 in myocardial ischemia-reperfusion injury. Int J Cardiol, 279: 147-147.
  • Wang L, Shen C, Wang Y, Zou T, Zhu H, Lu X. 2019b. Identification of circular RNA Hsa_circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis, 286: 88-96.
  • Werfel S, Nothjunge S, Schwarzmayr T, Strom TM, Meitinger T, Engelhardt S. 2016. Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol, 98: 103-107.
  • Wu JH, Li JQ, Liu H, Yin JW, Zhang MJ, Yu ZB. 2019. Circulating plasma circular RNAs as novel diagnostic biomarkers for congenital heart disease in children. J Clin Lab Anal, 33: e22998.
  • Xu TY, Wu J, Han P, Zhao ZM, Song XF. 2017. Circular RNA expression profiles and features in human tissues: a study using RNA-seq data. Bmc Genom, 18: 680.
  • Vausort M, Salgado-Somoza A, Zhang L, Leszek P, Scholz M, Teren A. 2016. Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. J Am Coll Cardiol, 68: 1247-1248.
  • Vilades D, Martinez-Camblor P, Ferrero-Gregori A, Bar C, Lu DC, Xiao K. 2020. Plasma circular RNA hsa_circ_0001445 and coronary artery disease: performance as a biomarker. Faseb J, 34: 4403-4414.
  • Zeng X, Lin W, Guo M, Zou Q. 2017. A comprehensive overview and evaluation of circular RNA detection tools. PLOS Comput Biol, 13: e1005420.
  • Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH. 2013. Circular intronic long noncoding RNAs. Mol Cell, 51: 792-806.
  • Zhang XO, Wang HB, Zhang Y, Lu XH, Chen LL, Yang L. 2014. Complementary sequence-mediated exon circularization. Cell, 159: 134-147.
  • Zhang J, Xu YL, Xu S, Liu Y, Yu LM, Li Z. 2018. Plasma circular RNAs, Hsa_circRNA_025016, predict postoperative atrial fibrillation after isolated off-pump coronary artery bypass grafting. J Am Heart Assoc, 7: e006642.
  • Zhang L, Zhang Y, Zhao YF, Wang Y, Ding H, Xue S. 2018. Circulating miRNAs as biomarkers for early diagnosis of coronary artery disease. Expert Opin Ther Pat, 28: 591-601.
  • Zhang L, Zhang Y, Wang Y, Zhao Y, Ding H, Li P. 2020. Circular RNAs: Functions and clinical significance in cardiovascular disease. Front Cell Dev Biol, 8: 584051.
  • Zhang Q, Sun WX, Han J, Cheng SY, Yu P, Shen L. 2020. The circular RNA hsa_circ_0007623 acts as a sponge of microRNA-297 and promotes cardiac repair. Biochem Biophys Res Co, 523: 993-1000.
  • Zheng C, Niu H, Li M, Zhang H, Yang Z, Tian L. 2015. Cyclic RNA hsacirc000595 regulates apoptosis of aortic smooth muscle cells. Mol Med Rep, 12: 6656-6662.
  • Zheng QP, Bao CY, Guo WJ, Li SY, Chen J, Chen B. 2016. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun, 7: 11215.
  • Zhou B, Yu JW. 2017. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-beta 1. Biochem Biophys Res Commun, 487: 769-775.
  • Zou M, Huang C, Li X, He X, Chen Y, Liao W. 2017. Circular RNA expression profile and potential function of hsa_circRNA_101238 in human thoracic aortic dissection. Oncotarget, 8: 81825-81837.
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Derleme
Yazarlar

Nil Özbilüm Bu kişi benim 0000-0002-2889-3600

İzzet Yelkuvan Bu kişi benim 0000-0002-4668-2444

Burcu Bayyurt 0000-0002-5618-457X

Yayımlanma Tarihi 1 Mayıs 2021
Gönderilme Tarihi 31 Ocak 2021
Kabul Tarihi 7 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 2

Kaynak Göster

APA Özbilüm, N., Yelkuvan, İ., & Bayyurt, B. (2021). Kardiyovasküler Hastalıklar için Yeni Epigenetik Belirteçler: Dairesel RNA’lar. Black Sea Journal of Health Science, 4(2), 189-196. https://doi.org/10.19127/bshealthscience.871765
AMA Özbilüm N, Yelkuvan İ, Bayyurt B. Kardiyovasküler Hastalıklar için Yeni Epigenetik Belirteçler: Dairesel RNA’lar. BSJ Health Sci. Mayıs 2021;4(2):189-196. doi:10.19127/bshealthscience.871765
Chicago Özbilüm, Nil, İzzet Yelkuvan, ve Burcu Bayyurt. “Kardiyovasküler Hastalıklar için Yeni Epigenetik Belirteçler: Dairesel RNA’lar”. Black Sea Journal of Health Science 4, sy. 2 (Mayıs 2021): 189-96. https://doi.org/10.19127/bshealthscience.871765.
EndNote Özbilüm N, Yelkuvan İ, Bayyurt B (01 Mayıs 2021) Kardiyovasküler Hastalıklar için Yeni Epigenetik Belirteçler: Dairesel RNA’lar. Black Sea Journal of Health Science 4 2 189–196.
IEEE N. Özbilüm, İ. Yelkuvan, ve B. Bayyurt, “Kardiyovasküler Hastalıklar için Yeni Epigenetik Belirteçler: Dairesel RNA’lar”, BSJ Health Sci., c. 4, sy. 2, ss. 189–196, 2021, doi: 10.19127/bshealthscience.871765.
ISNAD Özbilüm, Nil vd. “Kardiyovasküler Hastalıklar için Yeni Epigenetik Belirteçler: Dairesel RNA’lar”. Black Sea Journal of Health Science 4/2 (Mayıs 2021), 189-196. https://doi.org/10.19127/bshealthscience.871765.
JAMA Özbilüm N, Yelkuvan İ, Bayyurt B. Kardiyovasküler Hastalıklar için Yeni Epigenetik Belirteçler: Dairesel RNA’lar. BSJ Health Sci. 2021;4:189–196.
MLA Özbilüm, Nil vd. “Kardiyovasküler Hastalıklar için Yeni Epigenetik Belirteçler: Dairesel RNA’lar”. Black Sea Journal of Health Science, c. 4, sy. 2, 2021, ss. 189-96, doi:10.19127/bshealthscience.871765.
Vancouver Özbilüm N, Yelkuvan İ, Bayyurt B. Kardiyovasküler Hastalıklar için Yeni Epigenetik Belirteçler: Dairesel RNA’lar. BSJ Health Sci. 2021;4(2):189-96.