Araştırma Makalesi
BibTex RIS Kaynak Göster

Polietereterketon ve İndirekt Kompozit Rezin Kalınlığının, Endokronla Restore Edilmiş Maksiller Premolar Dişteki Stres Dağılımına Etkisi: 3 Boyutlu Sonlu Elemanlar Analizi

Yıl 2020, Cilt: 4 Sayı: 3, 298 - 305, 31.12.2020
https://doi.org/10.34084/bshr.825726

Öz

Amaç: Mevcut çalışmanın amacı, polietereterketon alt yapı ve indirekt kompozit rezin üst yapı materyallerinin kalınlıklarının, endodontik tedavisi yapılmış ve endokronla restore edilmiş maksiller premolar dişlerdeki stres dağılımına etkisinin incelenmesidir.
Yöntem: Çalışmada kontrol grubu olarak, sağlam maksiller premolar diş kullanılmıştır. Tüm gruplarda endokron materyali olarak polietereterketon alt yapı materyali ve indirekt kompozit rezin vener materyali kullanılmıştır. Çalışma gruplarında, endokronun okluzal kalınlığı 3 mm olarak sabitlenmiştir. Polyetheretherketone ve indirek kompozit rezin vener materyalinin kalınlığı; 1, 1,5 ve 2 mm olarak belirlenmiştir. 200 N büyüklüğünde vertikal ve oblik kuvvet altında, maksiller premolar dişteki stres dağılımı analiz edilmiştir.
Bulgular: Tüm gruplarda, Von Mises stres dağılımlarının aynı olduğu görülmüştür. Ayrıca, mine ve dentindeki von Mises stres değerleri, tüm endokron gruplarında aynı ve sağlam dişten daha yüksek bulunmuştur. Restoratif materyaldeki en düşük von Mises stres değerleri, 2 mm polietereterketon alt yapı ve 1 mm indirek kompozit vener materyalinden oluşan çalışma grubunda görülmüştür.
Sonuç: Polietereterketon ve indirek kompozit materyallerinin kalınlıkları, mine ve dentindeki von Mises stres dağılımları ve stres değerlerini etkilememiştir.

Teşekkür

Çalışmayı maddi olarak destekleyen kişi/kuruluş yoktur ve yazarların herhangi bir çıkar dayalı ilişkisi yoktur

Kaynakça

  • Dietschi D, Duc O, Krejci I, et al. Biomechanical considerations for the restoration of endodontically treated teeth: A systematic review of the literature, Part II (Evaluation of fatigue behavior, interfaces, and in vivo studies). Quintessence Int. 2008;39:117-29.
  • Sevimli G, Cengiz S, Oruc MS. Endocrowns: Review. J Istanbul Univ Fac Dent 2015;49:57-63.
  • Zarow M, Devoto W, Saracinelli M. Reconstruction of endodontically treated posterior teeth - with or without post? Guidelines for the dental practitioner. Eur J Esthet Dent 2009;4:312-27.
  • Goodacre CJ, Spolnik KJ. The prosthodontic management of endodontically treated teeth: a literature review. Part I. Success and failure data, treatment concepts. J Prosthodont 1994;3:243-50.
  • Bindl A, Mörmann WH. Clinical evaluation of adhesively placed Cerec endocrowns after 2 years–preliminary results. J Adhes Dent 1999;1:255-65.
  • Reich S, Wichmann M, Rinne H, et al. Clinicalperformance of large, all-ceramic CAD/CAM-generatedrestorations after three years, a pilot study. J Am Dent Assoc 2004;135:605–12.
  • Heimer S, Schmidlin PR, Stawarczyk B. Discoloration of PMMA, composite, and PEEK. Clin Oral Investig 2016;21:1191-200.
  • Silthampitag P, Chaijareenont P, Tattakorn K, et al. Effect of surface pretreatments on resin composite bonding to PEEK. Dent Mater J 2016;35:668-74.
  • Savoldelli C, Tillier Y, Bouchard PO, et al. Contribution of the finite element method in maxillofacial surgery. Revuede Stomatologie et de Chirurgie Maxillo-faciale 2009;110:27–33.
  • Van Staden RC, Guan H, Loo YC. Application of the finite element method in dental implant research. Computational Methods in Biomechanics and Biomedical Engineering 2006;9:257–70.
  • Valentina VAT, Dejan L, Vojkan L. Restoring endodontically treated teeth with all-ceramic endo-crowns: case report. Stom Glass S 2008;55:54-64.
  • Ferrari M, Vichi A, Mannocci F, et al. Retrospective study of the clinical performance of fiber posts. Am J Dent 2000;13:9-13.
  • Zoidis P, Bakiri E, Polyzois G. Using modified polyetheretherketone (PEEK) as an alternative material for endocrown restorations: A short-term clinical report. J Prosthet Dent, 2017;117:335-9.
  • Wheeler RC. Wheeler’s dental anatomy, physiology, and occlusion, 8th ed. Saunders, St. Louis, 2003 p; 154.
  • Pissis P. Fabrication of a metal-free ceramic restoration utilizing the monobloc technique. Pract Periodontics Aesthet Dent 1995;7:83-94.
  • Zhu J, Rong Q, Wang X, et al. Influence of remaining tooth structure and restorative material type on stress distribution in endodontically treated maxillary premolars: A finite element analysis. J Prosthet Dent 2017;117: 646-655.
  • Toparli M. Stress analysis in a post-restored tooth utilizing the finite element method. J Oral Rehabil 2003;30:470-6.
  • Lin CL, Chang YH, Liu PR. Multi-factorial analysis of a cusp-replacing adhesive premolar restoration: a finite element study. J Dent 2008;36:194-203.
  • Tekin S, Adıguzel O, Cangul S. An evaluation using micro-CT data of the stress formed in the crown and periodontal tissues from the use of PEEK post and PEEK crown: A 3D finite element analysis study. Int Dent Res 2018; 8:144-150.
  • Costa AKF, Xavier TA, Noritomi PY, et al. The influence of elastic modulus of inlay materials on stress distribution and fracture of premolars. Oper Dent 2014;39:160-170.
  • Vukicevic AM, Zelic K, Jovicic G, et al. Influence of dental restorations and mastication loadings on dentine fatigue behaviour: image based modelling approach. J Dent 2015;43:556-67.
  • Yaman SD, Sahin M, Aydin C. Finite element analysis of strength characteristics of various resin based restorative materials in class V cavities. J Oral Rehabil 2003;30:630-41.
  • Firidinoglu K, Toksavul S, Toman M, et al. Fracture resistance and analysis of stress distribution of implant-supported single zirconium ceramic coping combination with abutments made of different materials. J Appl Biomech 2012;28:394-9.
  • Dejak B, Mlotkowski A, Langot C. Three-dimensional finite element analysis of molars with thin-walled prosthetic crowns made of various materials. Dent Mater 2012;28:433-41.
  • Pegoretti A, Fambri L, Zappini G, et al. Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials 2002;23:2667-82.
  • Kamposiora P, Papavasiliou G, Bayne SC, et al. Predictions of cement microfracture under crowns using 3D‐FEA. J Prosthodont 2000; 9: 201-9.
  • Wimmer T, Erdelt K J, Raith S, et al. Effects of differing thickness and mechanical properties of cement on the stress levels and distributions in a three‐unit zirconia fixed prosthesis by FEA. J Prosthodont 2014; 23:358-66.
  • Bilhan SA, Baykasoglu C, Bilhan H, et al. Effect of attachment types and number of implants supporting mandibular overdentures on stress distribution: a computed tomography-based 3D finite element analysis. J Biomech 2015; 48:130-7.
  • Magne P. Virtual prototyping of adhesively restored, endodontically treated molars. J Prosthet Dent 2010;103:343-51.
  • Soares CJ, Martins LRM, Fonseca RB, et al. Influence of cavity preparation design on fracture resistance of posterior Leucite-reinforced ceramic restorations. J Prosthet Dent 2006;95:421-9.
  • Schaefer O, Watts DC, Sigusch BW, et al. Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: a three-dimensional analysis of accuracy and reproducibility. Dent Mater 2012;28:320-6.
  • Fonseca RB, Fernandes-Neto AJ, Correr-Sobrinho L, et al. The influence of cavity preparation design on fracture strength and mode of fracture of laboratory-processed composite resin restorations. J Prosthet Dent 2007;98:277-84.
  • Kikuti WY, Chaves FO, Di Hipo´lito V, et al. Fracture resistance of teeth restored with different resin-based restorative systems. Braz Oral Res 2012;26:275-281.
  • Costa AKF, Xavier TA, Noritomi PY, Saavedra G, et al. The influence of elastic modulus of inlay materials on stress distribution and fracture of premolars. Oper Dent 2014; 39:160-170.
  • Desai PD, Das UK. Comparison of fracture resistance of teeth restored with ceramic inlay and resin composite: An in vitro study. Indian J Dent Res 2011;22:877.
  • Dejak B, Mlotkowski A. 3D-Finite element analysis of molars restored with endocrowns and posts during masticatory simulation. Dent Mater 2013;29:309-17.
  • Bindl A, Richter B, Mormann WH. Survival of ceramic computer-aided design/ manufacturing crowns bonded to preparations with reduced macroretention geometry, Int J Prosthodont 2005;18:219–24.
  • Palamara D, Palamara JEA, Tyas MJ, et al. Strain patterns in cervical enamel of teeth subjected to occlusal loading. Dent Mater 2000;16:412-9.
  • Tsai YL, Petsche PE, Anusavice KJ, et al. Influence of glass-ceramic thickness on hertzian and bulk fracture mechanisms. Int J Prosthodont 1998;11:27-32.

Effect of Polyetheretherketone and Indirect Composite Resin Thickness On Stress Distribution in Maxillary Premolar Teeth Restored with Endocrown: A 3D Finite Element Analysis

Yıl 2020, Cilt: 4 Sayı: 3, 298 - 305, 31.12.2020
https://doi.org/10.34084/bshr.825726

Öz

Objective: The objective of this study was to evaluate the influence of polyetheretherketone substructure and indirect composite resin veneering material thicknesses on stress distribution in endodontically treated maxillary premolar teeth restored with endocrowns.
Methods: A sound maxillary premolar teeth was used as control group. Polyetheretherketone substructure and indirect composite resin veneering materials were used as endocrown materials in all study groups. The occlusal thicknesses of the endocrowns were fixed at 3 mm in study groups. Thicknesses of polyetheretherketone and indirect composite resin veneering material were determined as; 1, 1.5 and 2 mm. Stress distributions of maxillary premolar teeth under 200 N vertical and oblique loads were analyzed.
Results: Von Mises stress distributions were same in study groups. Von Mises stress values in enamel and dentin were same in all study groups and they were higher than sound teeth. The lowest Von Mises in restorative material were found in a study group with 2 mm PEEK substructure and 1 mm indirect composite resin veneering material thickness.
Conclusion: Difference in polyetheretherketone and indirect composite resin veneering materials’ thickness didn’t affect von Mises stress values and distributions in enamel, dentin.

Kaynakça

  • Dietschi D, Duc O, Krejci I, et al. Biomechanical considerations for the restoration of endodontically treated teeth: A systematic review of the literature, Part II (Evaluation of fatigue behavior, interfaces, and in vivo studies). Quintessence Int. 2008;39:117-29.
  • Sevimli G, Cengiz S, Oruc MS. Endocrowns: Review. J Istanbul Univ Fac Dent 2015;49:57-63.
  • Zarow M, Devoto W, Saracinelli M. Reconstruction of endodontically treated posterior teeth - with or without post? Guidelines for the dental practitioner. Eur J Esthet Dent 2009;4:312-27.
  • Goodacre CJ, Spolnik KJ. The prosthodontic management of endodontically treated teeth: a literature review. Part I. Success and failure data, treatment concepts. J Prosthodont 1994;3:243-50.
  • Bindl A, Mörmann WH. Clinical evaluation of adhesively placed Cerec endocrowns after 2 years–preliminary results. J Adhes Dent 1999;1:255-65.
  • Reich S, Wichmann M, Rinne H, et al. Clinicalperformance of large, all-ceramic CAD/CAM-generatedrestorations after three years, a pilot study. J Am Dent Assoc 2004;135:605–12.
  • Heimer S, Schmidlin PR, Stawarczyk B. Discoloration of PMMA, composite, and PEEK. Clin Oral Investig 2016;21:1191-200.
  • Silthampitag P, Chaijareenont P, Tattakorn K, et al. Effect of surface pretreatments on resin composite bonding to PEEK. Dent Mater J 2016;35:668-74.
  • Savoldelli C, Tillier Y, Bouchard PO, et al. Contribution of the finite element method in maxillofacial surgery. Revuede Stomatologie et de Chirurgie Maxillo-faciale 2009;110:27–33.
  • Van Staden RC, Guan H, Loo YC. Application of the finite element method in dental implant research. Computational Methods in Biomechanics and Biomedical Engineering 2006;9:257–70.
  • Valentina VAT, Dejan L, Vojkan L. Restoring endodontically treated teeth with all-ceramic endo-crowns: case report. Stom Glass S 2008;55:54-64.
  • Ferrari M, Vichi A, Mannocci F, et al. Retrospective study of the clinical performance of fiber posts. Am J Dent 2000;13:9-13.
  • Zoidis P, Bakiri E, Polyzois G. Using modified polyetheretherketone (PEEK) as an alternative material for endocrown restorations: A short-term clinical report. J Prosthet Dent, 2017;117:335-9.
  • Wheeler RC. Wheeler’s dental anatomy, physiology, and occlusion, 8th ed. Saunders, St. Louis, 2003 p; 154.
  • Pissis P. Fabrication of a metal-free ceramic restoration utilizing the monobloc technique. Pract Periodontics Aesthet Dent 1995;7:83-94.
  • Zhu J, Rong Q, Wang X, et al. Influence of remaining tooth structure and restorative material type on stress distribution in endodontically treated maxillary premolars: A finite element analysis. J Prosthet Dent 2017;117: 646-655.
  • Toparli M. Stress analysis in a post-restored tooth utilizing the finite element method. J Oral Rehabil 2003;30:470-6.
  • Lin CL, Chang YH, Liu PR. Multi-factorial analysis of a cusp-replacing adhesive premolar restoration: a finite element study. J Dent 2008;36:194-203.
  • Tekin S, Adıguzel O, Cangul S. An evaluation using micro-CT data of the stress formed in the crown and periodontal tissues from the use of PEEK post and PEEK crown: A 3D finite element analysis study. Int Dent Res 2018; 8:144-150.
  • Costa AKF, Xavier TA, Noritomi PY, et al. The influence of elastic modulus of inlay materials on stress distribution and fracture of premolars. Oper Dent 2014;39:160-170.
  • Vukicevic AM, Zelic K, Jovicic G, et al. Influence of dental restorations and mastication loadings on dentine fatigue behaviour: image based modelling approach. J Dent 2015;43:556-67.
  • Yaman SD, Sahin M, Aydin C. Finite element analysis of strength characteristics of various resin based restorative materials in class V cavities. J Oral Rehabil 2003;30:630-41.
  • Firidinoglu K, Toksavul S, Toman M, et al. Fracture resistance and analysis of stress distribution of implant-supported single zirconium ceramic coping combination with abutments made of different materials. J Appl Biomech 2012;28:394-9.
  • Dejak B, Mlotkowski A, Langot C. Three-dimensional finite element analysis of molars with thin-walled prosthetic crowns made of various materials. Dent Mater 2012;28:433-41.
  • Pegoretti A, Fambri L, Zappini G, et al. Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials 2002;23:2667-82.
  • Kamposiora P, Papavasiliou G, Bayne SC, et al. Predictions of cement microfracture under crowns using 3D‐FEA. J Prosthodont 2000; 9: 201-9.
  • Wimmer T, Erdelt K J, Raith S, et al. Effects of differing thickness and mechanical properties of cement on the stress levels and distributions in a three‐unit zirconia fixed prosthesis by FEA. J Prosthodont 2014; 23:358-66.
  • Bilhan SA, Baykasoglu C, Bilhan H, et al. Effect of attachment types and number of implants supporting mandibular overdentures on stress distribution: a computed tomography-based 3D finite element analysis. J Biomech 2015; 48:130-7.
  • Magne P. Virtual prototyping of adhesively restored, endodontically treated molars. J Prosthet Dent 2010;103:343-51.
  • Soares CJ, Martins LRM, Fonseca RB, et al. Influence of cavity preparation design on fracture resistance of posterior Leucite-reinforced ceramic restorations. J Prosthet Dent 2006;95:421-9.
  • Schaefer O, Watts DC, Sigusch BW, et al. Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: a three-dimensional analysis of accuracy and reproducibility. Dent Mater 2012;28:320-6.
  • Fonseca RB, Fernandes-Neto AJ, Correr-Sobrinho L, et al. The influence of cavity preparation design on fracture strength and mode of fracture of laboratory-processed composite resin restorations. J Prosthet Dent 2007;98:277-84.
  • Kikuti WY, Chaves FO, Di Hipo´lito V, et al. Fracture resistance of teeth restored with different resin-based restorative systems. Braz Oral Res 2012;26:275-281.
  • Costa AKF, Xavier TA, Noritomi PY, Saavedra G, et al. The influence of elastic modulus of inlay materials on stress distribution and fracture of premolars. Oper Dent 2014; 39:160-170.
  • Desai PD, Das UK. Comparison of fracture resistance of teeth restored with ceramic inlay and resin composite: An in vitro study. Indian J Dent Res 2011;22:877.
  • Dejak B, Mlotkowski A. 3D-Finite element analysis of molars restored with endocrowns and posts during masticatory simulation. Dent Mater 2013;29:309-17.
  • Bindl A, Richter B, Mormann WH. Survival of ceramic computer-aided design/ manufacturing crowns bonded to preparations with reduced macroretention geometry, Int J Prosthodont 2005;18:219–24.
  • Palamara D, Palamara JEA, Tyas MJ, et al. Strain patterns in cervical enamel of teeth subjected to occlusal loading. Dent Mater 2000;16:412-9.
  • Tsai YL, Petsche PE, Anusavice KJ, et al. Influence of glass-ceramic thickness on hertzian and bulk fracture mechanisms. Int J Prosthodont 1998;11:27-32.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diş Hekimliği
Bölüm Araştırma Makalesi
Yazarlar

Merve Köseoğlu 0000-0001-9110-9586

Fatma Furuncuoğlu 0000-0001-5986-1508

Yayımlanma Tarihi 31 Aralık 2020
Kabul Tarihi 27 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 3

Kaynak Göster

AMA Köseoğlu M, Furuncuoğlu F. Effect of Polyetheretherketone and Indirect Composite Resin Thickness On Stress Distribution in Maxillary Premolar Teeth Restored with Endocrown: A 3D Finite Element Analysis. J Biotechnol and Strategic Health Res. Aralık 2020;4(3):298-305. doi:10.34084/bshr.825726
  • Dergimiz Uluslararası hakemli bir dergi olup TÜRKİYE ATIF DİZİNİ, TürkMedline, CrossREF, ASOS index, Google Scholar, JournalTOCs, Eurasian Scientific Journal Index(ESJI), SOBIAD ve ISIindexing dizinlerinde taranmaktadır. TR Dizin(ULAKBİM), SCOPUS, DOAJ için başvurularımızın sonuçlanması beklenmektedir.