Heteromorpha arborescens (Spreng.) Cham. and Schltdl Leaves Using Two Extraction Methods," The Scientific World Journal, vol. 2020, p. 9232810, 2020/12/03 2020, doi: 10.1155/2020/9232810." />Rosa damascena in Human Cervical Cancer HeLa Cells," Oxidative Medicine and Cellular Longevity, vol. 2021, p. 6695634, 2021/01/28 2021, doi: 10.1155/2021/6695634." />
Derleme
BibTex RIS Kaynak Göster

Essential and Fixed Oils: Evaluation of Chemical Structure-Activity Relationship

Yıl 2022, Cilt: 5 Sayı: 1, 104 - 114, 30.06.2022
https://doi.org/10.55117/bufbd.1021436

Öz

Substances that can be separated from plants and whose effects on living systems are described and their use in fields such as pharmaceuticals, cosmetics, and food have always been among the remarkable issues. Antiseptic, antibacterial, antifungal, antioxidant, antiviral activities are the most common effects for fixed and essential oils obtained from herbal sources such as flowers, seeds, leaves, bark, branches, roots. Aromatherapy is a holistic treatment approach formulated with essential and fixed oils applied to improve physical and mental health. The National Institutes of Health of America (NIH) has stated that aromatherapy oils are inhalative and diffusive methods through the respiratory tract, topical applications through the skin in the form of gels, creams, lotions, and internal applications in the form of solutions, tablets, capsules. The number of current research articles on aromatherapy oils, which Hippocrates, who is called the father of Medicine, gave great importance to even in the 400s BC, is quite small. Recognizing the chemical structures of essential and fixed oils, associating them with biological activity, is very important in terms of providing basic knowledge to aromatherapy applications. In this review study, current and reliable studies on the most commonly used essential and fixed oils were evaluated in terms of chemical structure-activity applications.

Kaynakça

  • [1] S. Krist, "Introduction," in Vegetable Fats and Oils, S. Krist Ed. Cham: Springer International Publishing, 2020, pp. 1-26.
  • [2] J. Baptiste Hzounda Fokou, P. Michel Jazet Dongmo, and F. Fekam Boyom, "Essential Oil’s Chemical Composition and Pharmacological Properties," in Essential Oils - Oils of Nature, 2020.
  • [3] M. Butnariu and I. Sarac, "Essential Oils from Plants," Journal of Biotechnology and Biomedical Science, vol. 1, pp. 35-43, 12/21 2018, doi: 10.14302/issn.2576-6694.jbbs-18-2489.
  • [4] W. Dhifi, S. Bellili, S. Jazi, N. Bahloul, and W. Mnif, "Essential Oils' Chemical Characterization and Investigation of Some Biological Activities: A Critical Review," (in eng), Medicines (Basel), vol. 3, no. 4, p. 25, 2016, doi: 10.3390/medicines3040025.
  • [5] J. L. Robins, "The science and art of aromatherapy," (in eng), J Holist Nurs, vol. 17, no. 1, pp. 5-17, Mar 1999, doi: 10.1177/089801019901700102.
  • [6] X. Peng et al., "Chemical composition and antioxidant activity of essential oils from barks of Pinus pumila using microwave-assisted hydrodistillation after screw extrusion treatment," Ind Crops Prod, vol. 166, p. 113489, 2021/08/01/ 2021, doi: https://doi.org/10.1016/j.indcrop.2021.113489.
  • [7] H. E. Salama, M. S. Abdel Aziz, and M. W. Sabaa, "Development of antibacterial carboxymethyl cellulose/chitosan biguanidine hydrochloride edible films activated with frankincense essential oil," International Journal of Biological Macromolecules, vol. 139, pp. 1162-1167, 2019/10/15/ 2019, doi: https://doi.org/10.1016/j.ijbiomac.2019.08.104.
  • [8] L. Mehdizadeh and M. Moghaddam, "Chapter 10 - Essential Oils: Biological Activity and Therapeutic Potential," in Therapeutic, Probiotic, and Unconventional Foods, A. M. Grumezescu and A. M. Holban Eds.: Academic Press, 2018, pp. 167-179.
  • [9] K. Yeshi and P. Wangchuk, "Chapter 11 - Essential oils and their bioactive molecules in healthcare," in Herbal Biomolecules in Healthcare Applications, S. C. Mandal, A. K. Nayak, and A. K. Dhara Eds.: Academic Press, 2022, pp. 215-237.
  • [10] F. Nazzaro, L. De Martino, F. Fratianni, and V. De Feo, "Chapter 49 - Essential oils from Mediterranean aromatic plants," in The Mediterranean Diet (Second Edition), V. R. Preedy and R. R. Watson Eds.: Academic Press, 2020, pp. 555-564.
  • [11] T. O. Abifarin, G. A. Otunola, and A. J. Afolayan, "Chemical Composition of Essential Oils Obtained from <i>Heteromorpha arborescens</i> (Spreng.) Cham. and Schltdl Leaves Using Two Extraction Methods," The Scientific World Journal, vol. 2020, p. 9232810, 2020/12/03 2020, doi: 10.1155/2020/9232810.
  • [12] S. Sheweita, L. El-Hosseiny, and M. Nashashibi, "Protective Effects of Essential Oils as Natural Antioxidants against Hepatotoxicity Induced by Cyclophosphamide in Mice," PLoS ONE, vol. 11, 11/01 2016, doi: 10.1371/journal.pone.0165667.
  • [13] S. de Rapper, S. F. Van Vuuren, G. P. P. Kamatou, A. M. Viljoen, and E. Dagne, "The additive and synergistic antimicrobial effects of select frankincense and myrrh oils – a combination from the pharaonic pharmacopoeia," Letters in Applied Microbiology, https://doi.org/10.1111/j.1472-765X.2012.03216.x vol. 54, no. 4, pp. 352-358, 2012/04/01 2012, doi: https://doi.org/10.1111/j.1472-765X.2012.03216.x.
  • [14] M. Mertens, A. Buettner, and E. Kirchhoff, "The volatile constituents of frankincense – a review," Flavour and Fragrance Journal, https://doi.org/10.1002/ffj.1942 vol. 24, no. 6, pp. 279-300, 2009/11/01 2009, doi: https://doi.org/10.1002/ffj.1942.
  • [15] N. Banno et al., "Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri," (in eng), J Ethnopharmacol, vol. 107, no. 2, pp. 249-53, Sep 19 2006, doi: 10.1016/j.jep.2006.03.006. [16] L. Langmead and D. S. Rampton, "Review article: complementary and alternative therapies for inflammatory bowel disease," (in eng), Aliment Pharmacol Ther, vol. 23, no. 3, pp. 341-9, Feb 1 2006, doi: 10.1111/j.1365-2036.2006.02761.x.
  • [17] A. R. M. Al-Yasiry and B. Kiczorowska, "Frankincense - therapeutic properties," Kadzidłowiec - właściwości terapeutyczne., Article vol. 70, pp. 380-391, 2016, doi: 10.5604/17322693.1200553.
  • [18] M. B. Frank et al., "Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity," BMC Complementary and Alternative Medicine, vol. 9, no. 1, p. 6, 2009/03/18 2009, doi: 10.1186/1472-6882-9-6.
  • [19] A. Anis, K. Pal, and S. M. Al-Zahrani, "Essential Oil-Containing Polysaccharide-Based Edible Films and Coatings for Food Security Applications," Polymers, vol. 13, no. 4, 2021, doi: 10.3390/polym13040575.
  • [20] X. Ni et al., "Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model," (in eng), BMC Complement Altern Med, vol. 12, p. 253, Dec 13 2012, doi: 10.1186/1472-6882-12-253.
  • [21] H. Hussain, A. Al-Harrasi, and I. R. Green, "Chapter 48 - Frankincense (Boswellia) Oils," in Essential Oils in Food Preservation, Flavor and Safety, V. R. Preedy Ed. San Diego: Academic Press, 2016, pp. 431-440.
  • [22] E. Belhassen, J.-J. Filippi, H. Brévard, D. Joulain, and N. Baldovini, "Volatile constituents of vetiver: a review," Flavour and Fragrance Journal, https://doi.org/10.1002/ffj.3227 vol. 30, no. 1, pp. 26-82, 2015/01/01 2015, doi: https://doi.org/10.1002/ffj.3227.
  • [23] J.-J. Filippi, E. Belhassen, N. Baldovini, H. Brevard, and U. J. Meierhenrich, "Qualitative and quantitative analysis of vetiver essential oils by comprehensive two-dimensional gas chromatography and comprehensive two-dimensional gas chromatography/mass spectrometry," Journal of Chromatography A, vol. 1288, pp. 127-148, 2013/05/03/ 2013, doi: https://doi.org/10.1016/j.chroma.2013.03.002.
  • [24] X. W. Chen, J. T. F. Wong, J.-J. Wang, and M. H. Wong, "Vetiver grass-microbe interactions for soil remediation," Critical Reviews in Environmental Science and Technology, vol. 51, no. 9, pp. 897-938, 2021/05/03 2021, doi: 10.1080/10643389.2020.1738193.
  • [25] H. J. Kim, F. Chen, X. Wang, H. Y. Chung, and Z. Jin, "Evaluation of antioxidant activity of vetiver (Vetiveria zizanioides L.) oil and identification of its antioxidant constituents," (in eng), J Agric Food Chem, vol. 53, no. 20, pp. 7691-5, Oct 5 2005, doi: 10.1021/jf050833e.
  • [26] P. Burger et al., "Vetiver Essential Oil in Cosmetics: What Is New?," (in eng), Medicines (Basel), vol. 4, no. 2, p. 41, 2017, doi: 10.3390/medicines4020041.
  • [27] M. Rezaie-Tavirani et al., "Effect of essential oil of Rosa Damascena on human colon cancer cell line SW742," (in eng), Gastroenterol Hepatol Bed Bench, vol. 6, no. 1, pp. 25-31, Winter 2013.
  • [28] M. H. Boskabady, M. N. Shafei, Z. Saberi, and S. Amini, "Pharmacological effects of rosa damascena," (in eng), Iran J Basic Med Sci, vol. 14, no. 4, pp. 295-307, 2011. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/23493250 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586833/.
  • [29] D. Nedeltcheva-Antonova, P. Stoicheva, and L. Antonov, "Chemical profiling of Bulgarian rose absolute (Rosa damascena Mill.) using gas chromatography–mass spectrometry and trimethylsilyl derivatives," Ind Crops Prod, vol. 108, pp. 36-43, 2017/12/01/ 2017, doi: https://doi.org/10.1016/j.indcrop.2017.06.007.
  • [30] M. Niazi, M. H. Hashempur, M. Taghizadeh, M. Heydari, and A. Shariat, "Efficacy of topical Rose (Rosa damascena Mill.) oil for migraine headache: A randomized double-blinded placebo-controlled cross-over trial," Complementary Therapies in Medicine, vol. 34, pp. 35-41, 2017/10/01/ 2017, doi: https://doi.org/10.1016/j.ctim.2017.07.009.
  • [31] M. Kürkçüoglu, A. Abdel-Megeed, and K. H. C. Başer, "The composition of Taif rose oil," Journal of Essential Oil Research, vol. 25, no. 5, pp. 364-367, 2013/10/01 2013, doi: 10.1080/10412905.2013.809322.
  • [32] M. M. Al-Oqail et al., "Oxidative Stress Mediated Cytotoxicity, Cell Cycle Arrest, and Apoptosis Induced by <i>Rosa damascena</i> in Human Cervical Cancer HeLa Cells," Oxidative Medicine and Cellular Longevity, vol. 2021, p. 6695634, 2021/01/28 2021, doi: 10.1155/2021/6695634.
  • [33] V. López, B. Nielsen, M. Solas, M. J. Ramírez, and A. K. Jäger, "Exploring Pharmacological Mechanisms of Lavender (Lavandula angustifolia) Essential Oil on Central Nervous System Targets," (in English), Frontiers in Pharmacology, Original Research vol. 8, no. 280, 2017-May-19 2017, doi: 10.3389/fphar.2017.00280.
  • [34] P. Kwiatkowski et al., "The Antibacterial Activity of Lavender Essential Oil Alone and In Combination with Octenidine Dihydrochloride against MRSA Strains," (in eng), Molecules, vol. 25, no. 1, p. 95, 2019, doi: 10.3390/molecules25010095.
  • [35] H.-M. Mori, H. Kawanami, H. Kawahata, and M. Aoki, "Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model," (in eng), BMC complementary and alternative medicine, vol. 16, pp. 144-144, 2016, doi: 10.1186/s12906-016-1128-7.
  • [36] F. Bakhtshirin, S. Abedi, P. YusefiZoj, and D. Razmjooee, "The effect of aromatherapy massage with lavender oil on severity of primary dysmenorrhea in Arsanjan students," (in eng), Iran J Nurs Midwifery Res, vol. 20, no. 1, pp. 156-160, Jan-Feb 2015. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/25709705 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325408/.
  • [37] R. Braden, S. Reichow, and M. A. Halm, "The Use of the Essential Oil Lavandin to Reduce Preoperative Anxiety in Surgical Patients," Journal of PeriAnesthesia Nursing, vol. 24, no. 6, pp. 348-355, 2009/12/01/ 2009, doi: https://doi.org/10.1016/j.jopan.2009.10.002.
  • [38] L. A. E. Erland and S. S. Mahmoud, "Chapter 57 - Lavender (Lavandula angustifolia) Oils," in Essential Oils in Food Preservation, Flavor and Safety, V. R. Preedy Ed. San Diego: Academic Press, 2016, pp. 501-508.
  • [39] J. M. Gostner et al., "Lavender oil suppresses indoleamine 2,3-dioxygenase activity in human PBMC," (in eng), BMC complementary and alternative medicine, vol. 14, pp. 503-503, 2014, doi: 10.1186/1472-6882-14-503.
  • [40] R. Wells, F. Truong, A. M. Adal, L. S. Sarker, and S. S. Mahmoud, "Lavandula Essential Oils: A Current Review of Applications in Medicinal, Food, and Cosmetic Industries of Lavender," Natural Product Communications, vol. 13, no. 10, p. 1934578X1801301038, 2018/10/01 2018, doi: 10.1177/1934578X1801301038.
  • [41] V. Aleksic Sabo and P. Knezevic, "Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review," (in eng), Ind Crops Prod, vol. 132, pp. 413-429, 2019, doi: 10.1016/j.indcrop.2019.02.051.
  • [42] M. S. Sadatrasul et al., "Oil-in-water emulsion formulated with eucalyptus leaves extract inhibit influenza virus binding and replication in vitro," (in eng), AIMS Microbiol, vol. 3, no. 4, pp. 899-907, 2017, doi: 10.3934/microbiol.2017.4.899.
  • [43] A. E. Sadlon and D. W. Lamson, "Immune-modifying and antimicrobial effects of Eucalyptus oil and simple inhalation devices," (in eng), Altern Med Rev, vol. 15, no. 1, pp. 33-47, Apr 2010.
  • [44] "Chapter 2 - Composition, Structure, Physical Data, and Chemical Reactions of Fats and Oils, Their Derivatives, and Their Associates," in Fats and Oils Handbook, M. Bockisch Ed.: AOCS Press, 1998, pp. 53-120.
  • [45] "Fats and Oils," 2021/11/4/. [Online]. Available: https://chem.libretexts.org/@go/page/16138.
  • [46] Z. Wang, M. Fingas, C. Yang, and J. H. Christensen, "16 - Crude Oil and Refined Product Fingerprinting: Principles," in Environmental Forensics, R. D. Morrison and B. L. Murphy Eds. Burlington: Academic Press, 1964, pp. 339-407.
  • [47] J. Salimon, B. M. Abdullah, and N. Salih, "Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil," (in eng), Chem Cent J, vol. 5, pp. 67-67, 2011, doi: 10.1186/1752-153X-5-67.
  • [48] "Chapter 5 - The Extraction of Vegetable Oils," in Fats and Oils Handbook, M. Bockisch Ed.: AOCS Press, 1998, pp. 345-445.
  • [49] S. M. Roopan, "An Overview of Phytoconstituents, Biotechnological Applications, and Nutritive Aspects of Coconut (Cocos nucifera)," Applied Biochemistry and Biotechnology, vol. 179, no. 8, pp. 1309-1324, 2016/08/01 2016, doi: 10.1007/s12010-016-2067-y.
  • [50] L. Boateng, R. Ansong, W. B. Owusu, and M. Steiner-Asiedu, "Coconut oil and palm oil's role in nutrition, health and national development: A review," (in eng), Ghana Med J, vol. 50, no. 3, pp. 189-196, 2016. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/27752194 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5044790/.
  • [51] J. Chandran, N. Nayana, N. Roshini, and P. Nisha, "Oxidative stability, thermal stability and acceptability of coconut oil flavored with essential oils from black pepper and ginger," (in eng), J Food Sci Technol, vol. 54, no. 1, pp. 144-152, 2017, doi: 10.1007/s13197-016-2446-y.
  • [52] P. S. Kumar, "The influence of Azadirachta indica, Melaleuca alternifolia, and Cocos nucifera on Candida albicans strain in tissue conditioner at varying time intervals," (in eng), J Indian Prosthodont Soc, vol. 20, no. 2, pp. 171-179, Apr-Jun 2020, doi: 10.4103/jips.jips_366_19.
  • [53] P. S. Kumar, "The influence of Azadirachta indica, Melaleuca alternifolia, and Cocos nucifera on Candida albicans strain in tissue conditioner at varying time intervals," (in eng), Journal of Indian Prosthodontic Society, vol. 20, no. 2, pp. 171-179, Apr-Jun 2020, doi: 10.4103/jips.jips_366_19.
  • [54] S. Yadav, A. P. Mishra, S. Kumar, A. Negi, Asha, and V. K. Maurya, "Chapter 8 - Herbal wound healing agents," in Preparation of Phytopharmaceuticals for the Management of Disorders, C. Egbuna, A. P. Mishra, and M. R. Goyal Eds.: Academic Press, 2021, pp. 169-184.
  • [55] N. Radenahmad et al., "Young coconut juice can accelerate the healing process of cutaneous wounds," BMC Complementary and Alternative Medicine, vol. 12, no. 1, p. 252, 2012/12/12 2012, doi: 10.1186/1472-6882-12-252.
  • [56] P. Chatterjee et al., "Potential of coconut oil and medium chain triglycerides in the prevention and treatment of Alzheimer’s disease," Mechanisms of Ageing and Development, vol. 186, p. 111209, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.mad.2020.111209.
  • [57] S. V. Ramesh, V. Krishnan, S. Praveen, and K. B. Hebbar, "Dietary prospects of coconut oil for the prevention and treatment of Alzheimer's disease (AD): A review of recent evidences," Trends in Food Science & Technology, vol. 112, pp. 201-211, 2021/06/01/ 2021, doi: https://doi.org/10.1016/j.tifs.2021.03.046.
  • [58] H. A. Gad et al., "Jojoba Oil: An Updated Comprehensive Review on Chemistry, Pharmaceutical Uses, and Toxicity," (in eng), Polymers, vol. 13, no. 11, p. 1711, 2021, doi: 10.3390/polym13111711.
  • [59] A. L. Q. Hani, A. L. K. Ekbal, M. M. Nizar, and M. Anwar, "ANTIOXIDANT AND ANTIMICROBIAL ACTIVITIES OF JORDANIAN SIMMONDSIA CHINENSIS (LINK) C.K. SCHNEID," European Scientific Journal, ESJ, vol. 10, no. 27, 09/29 2014, doi: 10.19044/esj.2014.v10n27p%p.
  • [60] R. R. Habashy, A. B. Abdel-Naim, A. E. Khalifa, and M. M. Al-Azizi, "Anti-inflammatory effects of jojoba liquid wax in experimental models," Pharmacological Research, vol. 51, no. 2, pp. 95-105, 2005/02/01/ 2005, doi: https://doi.org/10.1016/j.phrs.2004.04.011.
  • [61] Z. Tietel et al., "Anti-Herpes Simplex 1 Activity of Simmondsia chinensis (Jojoba) Wax," Molecules, vol. 26, no. 19, 2021, doi: 10.3390/molecules26196059.
  • [62] S. M. Abou-Zeid, E. A. Tahoun, and H. O. AbuBakr, "Ameliorative effects of jojoba oil on fipronil-induced hepatorenal- and neuro-toxicity: the antioxidant status and apoptotic markers expression in rats," Environmental Science and Pollution Research, vol. 28, no. 20, pp. 25959-25971, 2021/05/01 2021, doi: 10.1007/s11356-020-12083-2.
  • [63] N. Garti, M. Shevachman, and A. Shani, "Solubilization of lycopene in jojoba oil microemulsion," Journal of the American Oil Chemists' Society, vol. 81, no. 9, pp. 873-877, 2004/09/01 2004, doi: 10.1007/s11746-004-0994-4.
  • [64] S. Krist, "Borage Seed Oil," in Vegetable Fats and Oils, S. Krist Ed. Cham: Springer International Publishing, 2020, pp. 145-151.
  • [65] M. Urrestarazu, V. Manuel Gallegos-Cedillo, F. Ferrón-Carrillo, J. Luis Guil-Guerrero, T. Lao, and J. Eugenio Álvaro, "Effects of the Salinity under Soilless Culture Systems on Gamma Linolenic Acid Levels in Borage Seed Oil," bioRxiv, p. 454405, 2018, doi: 10.1101/454405.
  • [66] R. E. Kast, "Borage oil reduction of rheumatoid arthritis activity may be mediated by increased cAMP that suppresses tumor necrosis factor-alpha," (in eng), Int Immunopharmacol, vol. 1, no. 12, pp. 2197-9, Nov 2001, doi: 10.1016/s1567-5769(01)00146-1.
  • [67] P. Mancuso, J. Whelan, S. J. DeMichele, C. C. Snider, J. A. Guszcza, and M. D. Karlstad, "Dietary fish oil and fish and borage oil suppress intrapulmonary proinflammatory eicosanoid biosynthesis and attenuate pulmonary neutrophil accumulation in endotoxic rats," (in eng), Crit Care Med, vol. 25, no. 7, pp. 1198-206, Jul 1997, doi: 10.1097/00003246-199707000-00023.
  • [68] T. Brosche and D. Platt, "Effect of borage oil consumption on fatty acid metabolism, transepidermal water loss and skin parameters in elderly people," Archives of Gerontology and Geriatrics, vol. 30, no. 2, pp. 139-150, 2000/04/01/ 2000, doi: https://doi.org/10.1016/S0167-4943(00)00046-7.
  • [69] S. De Spirt, W. Stahl, and U. Heinrich, "Effect of flaxseed- and borage oil ingestion on skin conditions," in Handbook of diet, nutrition and the skin, V. R. Preedy Ed. Wageningen: Wageningen Academic Publishers, 2012, pp. 232-242.
  • [70] E. K. Bae and S. J. Lee, "Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin," Journal of Microencapsulation, vol. 25, no. 8, pp. 549-560, 2008/12/01 2008, doi: 10.1080/02652040802075682.
  • [71] C. X. Tan, "Virgin avocado oil: An emerging source of functional fruit oil," Journal of Functional Foods, vol. 54, pp. 381-392, 2019/03/01/ 2019, doi: https://doi.org/10.1016/j.jff.2018.12.031.
  • [72] N. J. Salazar-López et al., "Avocado fruit and by-products as potential sources of bioactive compounds," Food Research International, vol. 138, p. 109774, 2020/12/01/ 2020, doi: https://doi.org/10.1016/j.foodres.2020.109774.
  • [73] S. Krist, "Avocado Oil," in Vegetable Fats and Oils, S. Krist Ed. Cham: Springer International Publishing, 2020, pp. 87-93.
  • [74] B. Cervantes-Paz and E. M. Yahia, "Avocado oil: Production and market demand, bioactive components, implications in health, and tendencies and potential uses," Comprehensive Reviews in Food Science and Food Safety, https://doi.org/10.1111/1541-4337.12784 vol. 20, no. 4, pp. 4120-4158, 2021/07/01 2021, doi: https://doi.org/10.1111/1541-4337.12784.
  • [75] F. J. Segovia, G. I. Hidalgo, J. Villasante, X. Ramis, and M. P. Almajano, "Avocado Seed: A Comparative Study of Antioxidant Content and Capacity in Protecting Oil Models from Oxidation," (in eng), Molecules, vol. 23, no. 10, p. 2421, 2018, doi: 10.3390/molecules23102421.
  • [76] F. D. Krumreich, C. D. Borges, C. R. B. Mendonça, C. Jansen-Alves, and R. C. Zambiazi, "Bioactive compounds and quality parameters of avocado oil obtained by different processes," Food Chemistry, vol. 257, pp. 376-381, 2018/08/15/ 2018, doi: https://doi.org/10.1016/j.foodchem.2018.03.048.
  • [77] I. Demirbolat, M. Kartal, and Ü. Karık, "Development and validation of a GC-FID method to quantify thymoquinone in black cumin seed oils," Journal of Research in Pharmacy, vol. 23, 05/17 2019, doi: 10.12991/jrp.2019.157.
  • [78] P. N. R. Rachman, Akrom, and E. Darmawan, "The efficacy of black cumin seed (Nigella sativa) oil and hypoglycemic drug combination to reduce HbA1c level in patients with metabolic syndrome risk," IOP Conference Series: Materials Science and Engineering, vol. 259, p. 012018, 2017/11 2017, doi: 10.1088/1757-899x/259/1/012018.
  • [79] M. F. R. Hassanien, A. M. A. Assiri, A. M. Alzohairy, and H. F. Oraby, "Health-promoting value and food applications of black cumin essential oil: an overview," (in eng), J Food Sci Technol, vol. 52, no. 10, pp. 6136-6142, 2015, doi: 10.1007/s13197-015-1785-4.
  • [80] M. Gün, "Holly Seed: Nigella Sativa," Some Knowledge Corresponding to Nigella Sativa’s Therapy Ailment. Lokman Hekim Journal 2 (1): 43, vol. 46, 2012.
  • [81] H. I. Tuna, B. Babadag, A. Ozkaraman, and G. Balci Alparslan, "Investigation of the effect of black cumin oil on pain in osteoarthritis geriatric individuals," Complementary Therapies in Clinical Practice, vol. 31, pp. 290-294, 2018/05/01/ 2018, doi: https://doi.org/10.1016/j.ctcp.2018.03.013.
  • [82] F. Isik et al., "Protective Effects of Black Cumin (Nigella sativa) Oil on TNBS-Induced Experimental Colitis in Rats," Digestive Diseases and Sciences, vol. 56, no. 3, pp. 721-730, 2011/03/01 2011, doi: 10.1007/s10620-010-1333-z.

Uçucu ve Sabit Yağlar: Kimyasal Yapı-Aktivite İlişki Değerlendirmesi

Yıl 2022, Cilt: 5 Sayı: 1, 104 - 114, 30.06.2022
https://doi.org/10.55117/bufbd.1021436

Öz

Bitkilerden ayrıştırılabilen, canlı sistemlere etkileri tanımlanan maddeler ve bunların farmasötik, kozmetik, gıda gibi alanlarda kullanımı her zaman dikkat çeken konulardan olmuştur. Bitkisel kaynaklardan örneğin çiçek, tohum, yaprak, kabuk, dal, köklerden elde edilen sabit ve uçucu yağlar için antiseptik, antibakteriyel, antifungal, antioksidan, antiviral aktiviteler bilinen en yaygın etkilerdendir. Aromaterapi, fiziksel ve ruhsal olarak yaşam kalitesini düzenlemek için uygulanan uçucu ve sabit yağlarla formüle edilen bütünsel tedavi yaklaşımıdır. Amerika Ulusal Sağlık Enstitüleri (NIH) aromaterapi yağlarının, solunum yolu üzerinden inhalatif ve difüzif yöntemlerinin, cilt üzerinden jel, krem, losyon şeklinde topikal uygulamalarının ve ağızdan çözelti, tablet, kapsül şeklinde dahili uygulamalarının olduğunu belirtmişlerdir. Tıbbın babası olarak anılan Hipokrat’ın MÖ 400’lü yıllarda çok önem verdiği aromaterapi yağları ile ilgili güncel araştırma makale sayısı oldukça azdır. Uçucu ve sabit yağların kimyasal yapılarının tanınması, biyolojik aktivite ile ilişkilendirilmesi, aromaterapi uygulamalarına temel bilgi birikimi sağlaması açısından çok önemlidir. Bu derleme çalışmasında en çok kullanılan uçucu ve sabit yağlarla ilgili güncel ve güvenilir çalışmalar kimyasal yapı-aktivite uygulamaları açısından değerlendirilmiştir.

Kaynakça

  • [1] S. Krist, "Introduction," in Vegetable Fats and Oils, S. Krist Ed. Cham: Springer International Publishing, 2020, pp. 1-26.
  • [2] J. Baptiste Hzounda Fokou, P. Michel Jazet Dongmo, and F. Fekam Boyom, "Essential Oil’s Chemical Composition and Pharmacological Properties," in Essential Oils - Oils of Nature, 2020.
  • [3] M. Butnariu and I. Sarac, "Essential Oils from Plants," Journal of Biotechnology and Biomedical Science, vol. 1, pp. 35-43, 12/21 2018, doi: 10.14302/issn.2576-6694.jbbs-18-2489.
  • [4] W. Dhifi, S. Bellili, S. Jazi, N. Bahloul, and W. Mnif, "Essential Oils' Chemical Characterization and Investigation of Some Biological Activities: A Critical Review," (in eng), Medicines (Basel), vol. 3, no. 4, p. 25, 2016, doi: 10.3390/medicines3040025.
  • [5] J. L. Robins, "The science and art of aromatherapy," (in eng), J Holist Nurs, vol. 17, no. 1, pp. 5-17, Mar 1999, doi: 10.1177/089801019901700102.
  • [6] X. Peng et al., "Chemical composition and antioxidant activity of essential oils from barks of Pinus pumila using microwave-assisted hydrodistillation after screw extrusion treatment," Ind Crops Prod, vol. 166, p. 113489, 2021/08/01/ 2021, doi: https://doi.org/10.1016/j.indcrop.2021.113489.
  • [7] H. E. Salama, M. S. Abdel Aziz, and M. W. Sabaa, "Development of antibacterial carboxymethyl cellulose/chitosan biguanidine hydrochloride edible films activated with frankincense essential oil," International Journal of Biological Macromolecules, vol. 139, pp. 1162-1167, 2019/10/15/ 2019, doi: https://doi.org/10.1016/j.ijbiomac.2019.08.104.
  • [8] L. Mehdizadeh and M. Moghaddam, "Chapter 10 - Essential Oils: Biological Activity and Therapeutic Potential," in Therapeutic, Probiotic, and Unconventional Foods, A. M. Grumezescu and A. M. Holban Eds.: Academic Press, 2018, pp. 167-179.
  • [9] K. Yeshi and P. Wangchuk, "Chapter 11 - Essential oils and their bioactive molecules in healthcare," in Herbal Biomolecules in Healthcare Applications, S. C. Mandal, A. K. Nayak, and A. K. Dhara Eds.: Academic Press, 2022, pp. 215-237.
  • [10] F. Nazzaro, L. De Martino, F. Fratianni, and V. De Feo, "Chapter 49 - Essential oils from Mediterranean aromatic plants," in The Mediterranean Diet (Second Edition), V. R. Preedy and R. R. Watson Eds.: Academic Press, 2020, pp. 555-564.
  • [11] T. O. Abifarin, G. A. Otunola, and A. J. Afolayan, "Chemical Composition of Essential Oils Obtained from <i>Heteromorpha arborescens</i> (Spreng.) Cham. and Schltdl Leaves Using Two Extraction Methods," The Scientific World Journal, vol. 2020, p. 9232810, 2020/12/03 2020, doi: 10.1155/2020/9232810.
  • [12] S. Sheweita, L. El-Hosseiny, and M. Nashashibi, "Protective Effects of Essential Oils as Natural Antioxidants against Hepatotoxicity Induced by Cyclophosphamide in Mice," PLoS ONE, vol. 11, 11/01 2016, doi: 10.1371/journal.pone.0165667.
  • [13] S. de Rapper, S. F. Van Vuuren, G. P. P. Kamatou, A. M. Viljoen, and E. Dagne, "The additive and synergistic antimicrobial effects of select frankincense and myrrh oils – a combination from the pharaonic pharmacopoeia," Letters in Applied Microbiology, https://doi.org/10.1111/j.1472-765X.2012.03216.x vol. 54, no. 4, pp. 352-358, 2012/04/01 2012, doi: https://doi.org/10.1111/j.1472-765X.2012.03216.x.
  • [14] M. Mertens, A. Buettner, and E. Kirchhoff, "The volatile constituents of frankincense – a review," Flavour and Fragrance Journal, https://doi.org/10.1002/ffj.1942 vol. 24, no. 6, pp. 279-300, 2009/11/01 2009, doi: https://doi.org/10.1002/ffj.1942.
  • [15] N. Banno et al., "Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri," (in eng), J Ethnopharmacol, vol. 107, no. 2, pp. 249-53, Sep 19 2006, doi: 10.1016/j.jep.2006.03.006. [16] L. Langmead and D. S. Rampton, "Review article: complementary and alternative therapies for inflammatory bowel disease," (in eng), Aliment Pharmacol Ther, vol. 23, no. 3, pp. 341-9, Feb 1 2006, doi: 10.1111/j.1365-2036.2006.02761.x.
  • [17] A. R. M. Al-Yasiry and B. Kiczorowska, "Frankincense - therapeutic properties," Kadzidłowiec - właściwości terapeutyczne., Article vol. 70, pp. 380-391, 2016, doi: 10.5604/17322693.1200553.
  • [18] M. B. Frank et al., "Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity," BMC Complementary and Alternative Medicine, vol. 9, no. 1, p. 6, 2009/03/18 2009, doi: 10.1186/1472-6882-9-6.
  • [19] A. Anis, K. Pal, and S. M. Al-Zahrani, "Essential Oil-Containing Polysaccharide-Based Edible Films and Coatings for Food Security Applications," Polymers, vol. 13, no. 4, 2021, doi: 10.3390/polym13040575.
  • [20] X. Ni et al., "Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model," (in eng), BMC Complement Altern Med, vol. 12, p. 253, Dec 13 2012, doi: 10.1186/1472-6882-12-253.
  • [21] H. Hussain, A. Al-Harrasi, and I. R. Green, "Chapter 48 - Frankincense (Boswellia) Oils," in Essential Oils in Food Preservation, Flavor and Safety, V. R. Preedy Ed. San Diego: Academic Press, 2016, pp. 431-440.
  • [22] E. Belhassen, J.-J. Filippi, H. Brévard, D. Joulain, and N. Baldovini, "Volatile constituents of vetiver: a review," Flavour and Fragrance Journal, https://doi.org/10.1002/ffj.3227 vol. 30, no. 1, pp. 26-82, 2015/01/01 2015, doi: https://doi.org/10.1002/ffj.3227.
  • [23] J.-J. Filippi, E. Belhassen, N. Baldovini, H. Brevard, and U. J. Meierhenrich, "Qualitative and quantitative analysis of vetiver essential oils by comprehensive two-dimensional gas chromatography and comprehensive two-dimensional gas chromatography/mass spectrometry," Journal of Chromatography A, vol. 1288, pp. 127-148, 2013/05/03/ 2013, doi: https://doi.org/10.1016/j.chroma.2013.03.002.
  • [24] X. W. Chen, J. T. F. Wong, J.-J. Wang, and M. H. Wong, "Vetiver grass-microbe interactions for soil remediation," Critical Reviews in Environmental Science and Technology, vol. 51, no. 9, pp. 897-938, 2021/05/03 2021, doi: 10.1080/10643389.2020.1738193.
  • [25] H. J. Kim, F. Chen, X. Wang, H. Y. Chung, and Z. Jin, "Evaluation of antioxidant activity of vetiver (Vetiveria zizanioides L.) oil and identification of its antioxidant constituents," (in eng), J Agric Food Chem, vol. 53, no. 20, pp. 7691-5, Oct 5 2005, doi: 10.1021/jf050833e.
  • [26] P. Burger et al., "Vetiver Essential Oil in Cosmetics: What Is New?," (in eng), Medicines (Basel), vol. 4, no. 2, p. 41, 2017, doi: 10.3390/medicines4020041.
  • [27] M. Rezaie-Tavirani et al., "Effect of essential oil of Rosa Damascena on human colon cancer cell line SW742," (in eng), Gastroenterol Hepatol Bed Bench, vol. 6, no. 1, pp. 25-31, Winter 2013.
  • [28] M. H. Boskabady, M. N. Shafei, Z. Saberi, and S. Amini, "Pharmacological effects of rosa damascena," (in eng), Iran J Basic Med Sci, vol. 14, no. 4, pp. 295-307, 2011. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/23493250 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586833/.
  • [29] D. Nedeltcheva-Antonova, P. Stoicheva, and L. Antonov, "Chemical profiling of Bulgarian rose absolute (Rosa damascena Mill.) using gas chromatography–mass spectrometry and trimethylsilyl derivatives," Ind Crops Prod, vol. 108, pp. 36-43, 2017/12/01/ 2017, doi: https://doi.org/10.1016/j.indcrop.2017.06.007.
  • [30] M. Niazi, M. H. Hashempur, M. Taghizadeh, M. Heydari, and A. Shariat, "Efficacy of topical Rose (Rosa damascena Mill.) oil for migraine headache: A randomized double-blinded placebo-controlled cross-over trial," Complementary Therapies in Medicine, vol. 34, pp. 35-41, 2017/10/01/ 2017, doi: https://doi.org/10.1016/j.ctim.2017.07.009.
  • [31] M. Kürkçüoglu, A. Abdel-Megeed, and K. H. C. Başer, "The composition of Taif rose oil," Journal of Essential Oil Research, vol. 25, no. 5, pp. 364-367, 2013/10/01 2013, doi: 10.1080/10412905.2013.809322.
  • [32] M. M. Al-Oqail et al., "Oxidative Stress Mediated Cytotoxicity, Cell Cycle Arrest, and Apoptosis Induced by <i>Rosa damascena</i> in Human Cervical Cancer HeLa Cells," Oxidative Medicine and Cellular Longevity, vol. 2021, p. 6695634, 2021/01/28 2021, doi: 10.1155/2021/6695634.
  • [33] V. López, B. Nielsen, M. Solas, M. J. Ramírez, and A. K. Jäger, "Exploring Pharmacological Mechanisms of Lavender (Lavandula angustifolia) Essential Oil on Central Nervous System Targets," (in English), Frontiers in Pharmacology, Original Research vol. 8, no. 280, 2017-May-19 2017, doi: 10.3389/fphar.2017.00280.
  • [34] P. Kwiatkowski et al., "The Antibacterial Activity of Lavender Essential Oil Alone and In Combination with Octenidine Dihydrochloride against MRSA Strains," (in eng), Molecules, vol. 25, no. 1, p. 95, 2019, doi: 10.3390/molecules25010095.
  • [35] H.-M. Mori, H. Kawanami, H. Kawahata, and M. Aoki, "Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model," (in eng), BMC complementary and alternative medicine, vol. 16, pp. 144-144, 2016, doi: 10.1186/s12906-016-1128-7.
  • [36] F. Bakhtshirin, S. Abedi, P. YusefiZoj, and D. Razmjooee, "The effect of aromatherapy massage with lavender oil on severity of primary dysmenorrhea in Arsanjan students," (in eng), Iran J Nurs Midwifery Res, vol. 20, no. 1, pp. 156-160, Jan-Feb 2015. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/25709705 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325408/.
  • [37] R. Braden, S. Reichow, and M. A. Halm, "The Use of the Essential Oil Lavandin to Reduce Preoperative Anxiety in Surgical Patients," Journal of PeriAnesthesia Nursing, vol. 24, no. 6, pp. 348-355, 2009/12/01/ 2009, doi: https://doi.org/10.1016/j.jopan.2009.10.002.
  • [38] L. A. E. Erland and S. S. Mahmoud, "Chapter 57 - Lavender (Lavandula angustifolia) Oils," in Essential Oils in Food Preservation, Flavor and Safety, V. R. Preedy Ed. San Diego: Academic Press, 2016, pp. 501-508.
  • [39] J. M. Gostner et al., "Lavender oil suppresses indoleamine 2,3-dioxygenase activity in human PBMC," (in eng), BMC complementary and alternative medicine, vol. 14, pp. 503-503, 2014, doi: 10.1186/1472-6882-14-503.
  • [40] R. Wells, F. Truong, A. M. Adal, L. S. Sarker, and S. S. Mahmoud, "Lavandula Essential Oils: A Current Review of Applications in Medicinal, Food, and Cosmetic Industries of Lavender," Natural Product Communications, vol. 13, no. 10, p. 1934578X1801301038, 2018/10/01 2018, doi: 10.1177/1934578X1801301038.
  • [41] V. Aleksic Sabo and P. Knezevic, "Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review," (in eng), Ind Crops Prod, vol. 132, pp. 413-429, 2019, doi: 10.1016/j.indcrop.2019.02.051.
  • [42] M. S. Sadatrasul et al., "Oil-in-water emulsion formulated with eucalyptus leaves extract inhibit influenza virus binding and replication in vitro," (in eng), AIMS Microbiol, vol. 3, no. 4, pp. 899-907, 2017, doi: 10.3934/microbiol.2017.4.899.
  • [43] A. E. Sadlon and D. W. Lamson, "Immune-modifying and antimicrobial effects of Eucalyptus oil and simple inhalation devices," (in eng), Altern Med Rev, vol. 15, no. 1, pp. 33-47, Apr 2010.
  • [44] "Chapter 2 - Composition, Structure, Physical Data, and Chemical Reactions of Fats and Oils, Their Derivatives, and Their Associates," in Fats and Oils Handbook, M. Bockisch Ed.: AOCS Press, 1998, pp. 53-120.
  • [45] "Fats and Oils," 2021/11/4/. [Online]. Available: https://chem.libretexts.org/@go/page/16138.
  • [46] Z. Wang, M. Fingas, C. Yang, and J. H. Christensen, "16 - Crude Oil and Refined Product Fingerprinting: Principles," in Environmental Forensics, R. D. Morrison and B. L. Murphy Eds. Burlington: Academic Press, 1964, pp. 339-407.
  • [47] J. Salimon, B. M. Abdullah, and N. Salih, "Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil," (in eng), Chem Cent J, vol. 5, pp. 67-67, 2011, doi: 10.1186/1752-153X-5-67.
  • [48] "Chapter 5 - The Extraction of Vegetable Oils," in Fats and Oils Handbook, M. Bockisch Ed.: AOCS Press, 1998, pp. 345-445.
  • [49] S. M. Roopan, "An Overview of Phytoconstituents, Biotechnological Applications, and Nutritive Aspects of Coconut (Cocos nucifera)," Applied Biochemistry and Biotechnology, vol. 179, no. 8, pp. 1309-1324, 2016/08/01 2016, doi: 10.1007/s12010-016-2067-y.
  • [50] L. Boateng, R. Ansong, W. B. Owusu, and M. Steiner-Asiedu, "Coconut oil and palm oil's role in nutrition, health and national development: A review," (in eng), Ghana Med J, vol. 50, no. 3, pp. 189-196, 2016. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/27752194 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5044790/.
  • [51] J. Chandran, N. Nayana, N. Roshini, and P. Nisha, "Oxidative stability, thermal stability and acceptability of coconut oil flavored with essential oils from black pepper and ginger," (in eng), J Food Sci Technol, vol. 54, no. 1, pp. 144-152, 2017, doi: 10.1007/s13197-016-2446-y.
  • [52] P. S. Kumar, "The influence of Azadirachta indica, Melaleuca alternifolia, and Cocos nucifera on Candida albicans strain in tissue conditioner at varying time intervals," (in eng), J Indian Prosthodont Soc, vol. 20, no. 2, pp. 171-179, Apr-Jun 2020, doi: 10.4103/jips.jips_366_19.
  • [53] P. S. Kumar, "The influence of Azadirachta indica, Melaleuca alternifolia, and Cocos nucifera on Candida albicans strain in tissue conditioner at varying time intervals," (in eng), Journal of Indian Prosthodontic Society, vol. 20, no. 2, pp. 171-179, Apr-Jun 2020, doi: 10.4103/jips.jips_366_19.
  • [54] S. Yadav, A. P. Mishra, S. Kumar, A. Negi, Asha, and V. K. Maurya, "Chapter 8 - Herbal wound healing agents," in Preparation of Phytopharmaceuticals for the Management of Disorders, C. Egbuna, A. P. Mishra, and M. R. Goyal Eds.: Academic Press, 2021, pp. 169-184.
  • [55] N. Radenahmad et al., "Young coconut juice can accelerate the healing process of cutaneous wounds," BMC Complementary and Alternative Medicine, vol. 12, no. 1, p. 252, 2012/12/12 2012, doi: 10.1186/1472-6882-12-252.
  • [56] P. Chatterjee et al., "Potential of coconut oil and medium chain triglycerides in the prevention and treatment of Alzheimer’s disease," Mechanisms of Ageing and Development, vol. 186, p. 111209, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.mad.2020.111209.
  • [57] S. V. Ramesh, V. Krishnan, S. Praveen, and K. B. Hebbar, "Dietary prospects of coconut oil for the prevention and treatment of Alzheimer's disease (AD): A review of recent evidences," Trends in Food Science & Technology, vol. 112, pp. 201-211, 2021/06/01/ 2021, doi: https://doi.org/10.1016/j.tifs.2021.03.046.
  • [58] H. A. Gad et al., "Jojoba Oil: An Updated Comprehensive Review on Chemistry, Pharmaceutical Uses, and Toxicity," (in eng), Polymers, vol. 13, no. 11, p. 1711, 2021, doi: 10.3390/polym13111711.
  • [59] A. L. Q. Hani, A. L. K. Ekbal, M. M. Nizar, and M. Anwar, "ANTIOXIDANT AND ANTIMICROBIAL ACTIVITIES OF JORDANIAN SIMMONDSIA CHINENSIS (LINK) C.K. SCHNEID," European Scientific Journal, ESJ, vol. 10, no. 27, 09/29 2014, doi: 10.19044/esj.2014.v10n27p%p.
  • [60] R. R. Habashy, A. B. Abdel-Naim, A. E. Khalifa, and M. M. Al-Azizi, "Anti-inflammatory effects of jojoba liquid wax in experimental models," Pharmacological Research, vol. 51, no. 2, pp. 95-105, 2005/02/01/ 2005, doi: https://doi.org/10.1016/j.phrs.2004.04.011.
  • [61] Z. Tietel et al., "Anti-Herpes Simplex 1 Activity of Simmondsia chinensis (Jojoba) Wax," Molecules, vol. 26, no. 19, 2021, doi: 10.3390/molecules26196059.
  • [62] S. M. Abou-Zeid, E. A. Tahoun, and H. O. AbuBakr, "Ameliorative effects of jojoba oil on fipronil-induced hepatorenal- and neuro-toxicity: the antioxidant status and apoptotic markers expression in rats," Environmental Science and Pollution Research, vol. 28, no. 20, pp. 25959-25971, 2021/05/01 2021, doi: 10.1007/s11356-020-12083-2.
  • [63] N. Garti, M. Shevachman, and A. Shani, "Solubilization of lycopene in jojoba oil microemulsion," Journal of the American Oil Chemists' Society, vol. 81, no. 9, pp. 873-877, 2004/09/01 2004, doi: 10.1007/s11746-004-0994-4.
  • [64] S. Krist, "Borage Seed Oil," in Vegetable Fats and Oils, S. Krist Ed. Cham: Springer International Publishing, 2020, pp. 145-151.
  • [65] M. Urrestarazu, V. Manuel Gallegos-Cedillo, F. Ferrón-Carrillo, J. Luis Guil-Guerrero, T. Lao, and J. Eugenio Álvaro, "Effects of the Salinity under Soilless Culture Systems on Gamma Linolenic Acid Levels in Borage Seed Oil," bioRxiv, p. 454405, 2018, doi: 10.1101/454405.
  • [66] R. E. Kast, "Borage oil reduction of rheumatoid arthritis activity may be mediated by increased cAMP that suppresses tumor necrosis factor-alpha," (in eng), Int Immunopharmacol, vol. 1, no. 12, pp. 2197-9, Nov 2001, doi: 10.1016/s1567-5769(01)00146-1.
  • [67] P. Mancuso, J. Whelan, S. J. DeMichele, C. C. Snider, J. A. Guszcza, and M. D. Karlstad, "Dietary fish oil and fish and borage oil suppress intrapulmonary proinflammatory eicosanoid biosynthesis and attenuate pulmonary neutrophil accumulation in endotoxic rats," (in eng), Crit Care Med, vol. 25, no. 7, pp. 1198-206, Jul 1997, doi: 10.1097/00003246-199707000-00023.
  • [68] T. Brosche and D. Platt, "Effect of borage oil consumption on fatty acid metabolism, transepidermal water loss and skin parameters in elderly people," Archives of Gerontology and Geriatrics, vol. 30, no. 2, pp. 139-150, 2000/04/01/ 2000, doi: https://doi.org/10.1016/S0167-4943(00)00046-7.
  • [69] S. De Spirt, W. Stahl, and U. Heinrich, "Effect of flaxseed- and borage oil ingestion on skin conditions," in Handbook of diet, nutrition and the skin, V. R. Preedy Ed. Wageningen: Wageningen Academic Publishers, 2012, pp. 232-242.
  • [70] E. K. Bae and S. J. Lee, "Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin," Journal of Microencapsulation, vol. 25, no. 8, pp. 549-560, 2008/12/01 2008, doi: 10.1080/02652040802075682.
  • [71] C. X. Tan, "Virgin avocado oil: An emerging source of functional fruit oil," Journal of Functional Foods, vol. 54, pp. 381-392, 2019/03/01/ 2019, doi: https://doi.org/10.1016/j.jff.2018.12.031.
  • [72] N. J. Salazar-López et al., "Avocado fruit and by-products as potential sources of bioactive compounds," Food Research International, vol. 138, p. 109774, 2020/12/01/ 2020, doi: https://doi.org/10.1016/j.foodres.2020.109774.
  • [73] S. Krist, "Avocado Oil," in Vegetable Fats and Oils, S. Krist Ed. Cham: Springer International Publishing, 2020, pp. 87-93.
  • [74] B. Cervantes-Paz and E. M. Yahia, "Avocado oil: Production and market demand, bioactive components, implications in health, and tendencies and potential uses," Comprehensive Reviews in Food Science and Food Safety, https://doi.org/10.1111/1541-4337.12784 vol. 20, no. 4, pp. 4120-4158, 2021/07/01 2021, doi: https://doi.org/10.1111/1541-4337.12784.
  • [75] F. J. Segovia, G. I. Hidalgo, J. Villasante, X. Ramis, and M. P. Almajano, "Avocado Seed: A Comparative Study of Antioxidant Content and Capacity in Protecting Oil Models from Oxidation," (in eng), Molecules, vol. 23, no. 10, p. 2421, 2018, doi: 10.3390/molecules23102421.
  • [76] F. D. Krumreich, C. D. Borges, C. R. B. Mendonça, C. Jansen-Alves, and R. C. Zambiazi, "Bioactive compounds and quality parameters of avocado oil obtained by different processes," Food Chemistry, vol. 257, pp. 376-381, 2018/08/15/ 2018, doi: https://doi.org/10.1016/j.foodchem.2018.03.048.
  • [77] I. Demirbolat, M. Kartal, and Ü. Karık, "Development and validation of a GC-FID method to quantify thymoquinone in black cumin seed oils," Journal of Research in Pharmacy, vol. 23, 05/17 2019, doi: 10.12991/jrp.2019.157.
  • [78] P. N. R. Rachman, Akrom, and E. Darmawan, "The efficacy of black cumin seed (Nigella sativa) oil and hypoglycemic drug combination to reduce HbA1c level in patients with metabolic syndrome risk," IOP Conference Series: Materials Science and Engineering, vol. 259, p. 012018, 2017/11 2017, doi: 10.1088/1757-899x/259/1/012018.
  • [79] M. F. R. Hassanien, A. M. A. Assiri, A. M. Alzohairy, and H. F. Oraby, "Health-promoting value and food applications of black cumin essential oil: an overview," (in eng), J Food Sci Technol, vol. 52, no. 10, pp. 6136-6142, 2015, doi: 10.1007/s13197-015-1785-4.
  • [80] M. Gün, "Holly Seed: Nigella Sativa," Some Knowledge Corresponding to Nigella Sativa’s Therapy Ailment. Lokman Hekim Journal 2 (1): 43, vol. 46, 2012.
  • [81] H. I. Tuna, B. Babadag, A. Ozkaraman, and G. Balci Alparslan, "Investigation of the effect of black cumin oil on pain in osteoarthritis geriatric individuals," Complementary Therapies in Clinical Practice, vol. 31, pp. 290-294, 2018/05/01/ 2018, doi: https://doi.org/10.1016/j.ctcp.2018.03.013.
  • [82] F. Isik et al., "Protective Effects of Black Cumin (Nigella sativa) Oil on TNBS-Induced Experimental Colitis in Rats," Digestive Diseases and Sciences, vol. 56, no. 3, pp. 721-730, 2011/03/01 2011, doi: 10.1007/s10620-010-1333-z.
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

Gülce Taşkor Önel 0000-0002-9375-2329

Hatice Gözde Yaman Akbay 0000-0002-4421-0291

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 1

Kaynak Göster

APA Taşkor Önel, G., & Yaman Akbay, H. G. (2022). Uçucu ve Sabit Yağlar: Kimyasal Yapı-Aktivite İlişki Değerlendirmesi. Bayburt Üniversitesi Fen Bilimleri Dergisi, 5(1), 104-114. https://doi.org/10.55117/bufbd.1021436
AMA Taşkor Önel G, Yaman Akbay HG. Uçucu ve Sabit Yağlar: Kimyasal Yapı-Aktivite İlişki Değerlendirmesi. Bayburt Üniversitesi Fen Bilimleri Dergisi. Haziran 2022;5(1):104-114. doi:10.55117/bufbd.1021436
Chicago Taşkor Önel, Gülce, ve Hatice Gözde Yaman Akbay. “Uçucu Ve Sabit Yağlar: Kimyasal Yapı-Aktivite İlişki Değerlendirmesi”. Bayburt Üniversitesi Fen Bilimleri Dergisi 5, sy. 1 (Haziran 2022): 104-14. https://doi.org/10.55117/bufbd.1021436.
EndNote Taşkor Önel G, Yaman Akbay HG (01 Haziran 2022) Uçucu ve Sabit Yağlar: Kimyasal Yapı-Aktivite İlişki Değerlendirmesi. Bayburt Üniversitesi Fen Bilimleri Dergisi 5 1 104–114.
IEEE G. Taşkor Önel ve H. G. Yaman Akbay, “Uçucu ve Sabit Yağlar: Kimyasal Yapı-Aktivite İlişki Değerlendirmesi”, Bayburt Üniversitesi Fen Bilimleri Dergisi, c. 5, sy. 1, ss. 104–114, 2022, doi: 10.55117/bufbd.1021436.
ISNAD Taşkor Önel, Gülce - Yaman Akbay, Hatice Gözde. “Uçucu Ve Sabit Yağlar: Kimyasal Yapı-Aktivite İlişki Değerlendirmesi”. Bayburt Üniversitesi Fen Bilimleri Dergisi 5/1 (Haziran 2022), 104-114. https://doi.org/10.55117/bufbd.1021436.
JAMA Taşkor Önel G, Yaman Akbay HG. Uçucu ve Sabit Yağlar: Kimyasal Yapı-Aktivite İlişki Değerlendirmesi. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2022;5:104–114.
MLA Taşkor Önel, Gülce ve Hatice Gözde Yaman Akbay. “Uçucu Ve Sabit Yağlar: Kimyasal Yapı-Aktivite İlişki Değerlendirmesi”. Bayburt Üniversitesi Fen Bilimleri Dergisi, c. 5, sy. 1, 2022, ss. 104-1, doi:10.55117/bufbd.1021436.
Vancouver Taşkor Önel G, Yaman Akbay HG. Uçucu ve Sabit Yağlar: Kimyasal Yapı-Aktivite İlişki Değerlendirmesi. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2022;5(1):104-1.

Taranılan Dizinler