Araştırma Makalesi
BibTex RIS Kaynak Göster

ELECTROMAGNETIC SHIELDING PERFORMANCES OF COLEMANITE / PANI / SIO2 COMPOSITES IN RADAR AND WIDER FREQUENCY RANGES

Yıl 2020, Cilt: 13 Sayı: 1, 34 - 42, 30.06.2020
https://doi.org/10.20854/bujse.742821

Öz

In this study, colemanite-SiO2 were produced by using mixed oxide technique. The composition was formed with various proportions for the structural analysis. The results of the structural analysis indicated that second phase did not form in colemanite and SiO2. Addionality, the colemanite/polyaniline/SiO2 composites were produced by hot pressing using the compositions of colemanite-SiO2 in different proportions and aniline. The weight ratios of colemanite-SiO2 and aniline were 1:1 respectively and epoxy resin was used to produce microwave shielding composites. The microwave shielding performances of colemanite/polyaniline/SiO2 composites were investigated by shielding effectiveness in 8 –18 GHz using two–port vector network analyzer. A minimum of – 41.1 dB shielding effectiveness performance was obtained in 16.09 GHz at the thickness of 1.5 mm. This shielding performance can be modulated simply by controlling the content of polyaniline and content of colemanite-SiO2 in the samples for the required frequency bands.

Destekleyen Kurum

İSTANBUL TEKNİK ÜNİVERSİTESİ

Teşekkür

This study was supported by Istanbul Technical University. This study is attributed to Salim Şahin who passed away in 2015 and Prof. Dr. Ayhan Mergen who passed away in 2018. The authors would like to express their gratitude to their for his friendship, comments and faithful collaboration.

Kaynakça

  • [1] Yang, S., Lozano, K., Lomeli, A., Foltz H. D., and Jones, R. Composites Part A: Applied Science and Manufacturing, 2005, 36, 691-697. [2] Li, N., Huang, Y., Du, F.,. He, X., Lin, X., Gao, H., Ma, Y.,. Li, F., Chen Y., and Eklund,P. C., Nano Letters,2006, 6, 1141-1145. [3] M. H. Al-Saleh and U. Sundararaj, Carbon, 2009, 47, 1738-1746. [4] F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y.Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science 353(6304) (2016) 1137-1140. [5] N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J. K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding, Adv. Mater. 26(31) (2014) 5480-5487. [6] J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z.Z. Yu, Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding, Adv. Mater. 29(38) (2017) 1702367. [7] F. Kargar, Z. Barani, M. Balinskiy, A.S. Magana, J.S. Lewis, A.A. Balandin,Dual-functional graphene composites for electromagnetic shielding and thermal management, Adv. Electron. Mater. 5(1) (2019) 1800558. [8] X. Jia, B. Shen, Z. Chen, L. Zhang, W. Zheng, High-performance carbonized waste corrugated boards reinforced with epoxy coating as lightweight structured electromagnetic shields, ACS Sustainable Chem. Eng. 7(22) (2019) 18718-18725. [9] X. Zhang, Y. Rao, J. Guo, G. Qin, Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption, Carbon. 96 (2016) 972-979. [10] C.S. Zhang, Q.-Q. Ni, S.Y. Fu, K. Kurashiki, Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer, Compos. Sci. Technol. 67(14) (2007) 2973-2980. [11] S.H. Lee, S. Yu, F. Shahzad, J.P. Hong, W.N. Kim, C. Park, S.M. Hong, C.M. Koo, Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding, Compos. Sci. Technol. 144 (2017) 57-62. [12] W.L. Song, P. Wang, L. Cao, A. Anderson, M.J. Meziani, A.J. Farr, Y.P. Sun, Polymer/boron nitride nanocomposite materials for superior thermal transport performance, Angew. Chem. Int. Ed. 51(26) (2012) 6498-6501. [13] M.J. Meziani, W.L. Song, P. Wang, F. Lu, Z. Hou, A. Anderson, H. Maimaiti, Y.-P. Sun, Boron nitride nanomaterials for thermal management applications, Chemphyschem 16(7) (2015) 1339-1346. [14] Z. Chen, D. Yi, B. Shen, L. Zhang, X. Ma, Y. Pang, L. Liu, X. Wei, W. Zheng, Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding, Carbon 139 (2018) 271-278. [15] P. Li, Z. Jin, L. Peng, F. Zhao, D. Xiao, Y. Jin, G. Yu, Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels, Adv. Mater. 30(18) (2018) 1800124. [16] A. I. Gopalan, S. Komathi, N. Muthuchamy, K. P. Lee, M.J. Whitcombe, L. Dhana, G. Sai-Anand, Functionalized conjugated polymers for sensing and molecular imprinting applications, Prog. Polym. Sci. 88 (2019) 1-129. [17] W. Zhang, X. Zhang, Z. Wu, K. Abdurahman, Y. Cao, H. Duan, D. Jia, Mechanical, electromagnetic shielding and gas sensing properties of flexible cotton fiber/polyaniline composites, Compos. Sci. Technol. (2019) 107966. [18] Schnitzler, D.C., Meruvia, M.S., Hümmelgen, I., Aldo, J., Zarbin, G. Preparation and Characterization of Novel Hybrid Materials Formed from (Ti,Sn)O2 Nanoparticles and Polyaniline Chemistry of Materials 15 (24) 2003: pp. 4658 – 4665.https://doi.org/10.1021/cm034292p [19] Ma, X., Zhang, X., Li, Y., Li, G., Wang, M., Chen, H., Mi, Y. Preparation of Nano-Structured Polyaniline Composite Film Via ‘‘Carbon Nanotubes Seeding’’ Approach and its Gas-Response Studies Macromolecular Materials and Engineering 1 (291) 2006: pp. 75 – 82. https://doi.org/10.1002/mame.200500296 [20] Sahin, E.I., Paker S., Kartal M., 2019 “Characterization, Production and Microwave Absorbing Properties of Polyaniline-NiFe2O4: Tb Composites” ,Materials Science (Medziagotyra). Vol. 25, 2019: pp. 322-327. [21] Y. Zhang, Z. Yang, Y. Yu, B. Wen, Y. Liu, M. Qiu, Tunable electromagnetic interference shielding ability in a one-dimensional bagasse fiber/polyaniline heterostructure, ACS Appl. Polym. Mater. 1 (2019) 737-745. [22] M.S. Celik, F. Suner, A Thermodynamic Analysis of the Decrepitation Process, Thermochim. Acta. 1995,254, 167. [23] R.L. Frost, Y. Xi, R. Scholz, F.M. Belotti, M. Cândido Filho, Infrared and Raman Spectroscopic Characterization of the Borate Mineral Colemanite-CaB3O4(OH)3•H2O-Implications for the Molecular Structure, J. Mol. Struct. 2013,1037, 23. doi:10.1016/j.molstruc.2012.11.047. [24] Stober, W., Fink, A., and Bohn, E., J. Colloid Interface Sci. 26, 62 (1968). [25] Xia, Y. N., Gates, B., and Yin, Y. D., Adv. Mater. 12, 693 (2000) [26] J.N. Pereira, C.M. Costa, S.L. Mendez, Polymer composites and blends for battery separators: state of the art, challenges and future trends, J. Power Sources 281 (2015) 378–398, https://doi.org/10.1016/j.jpowsour.2015.02.010. [27] C.M. Costa, J.L.G. Ribelles, S.L. Mendez, G.B. Appetecchi, B. Scrosati, Poly (vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems, J. Power Sources 245 (2014) 779–786, https://doi. org/10.1016/j.jpowsour.2013.06.151. [28] N. Angulakshmi, A.M. Stephan, Electrospun trilayer polymeric membranes as separator for lithium–ion batteries, Electrochim. Acta 127 (2014) 167–172, https://doi.org/10.1007/s10570-017-1225-x. [29] D.J. Chen, Z.Q. Zhou, C. Feng, W.Q. Lv, Z.H. Wei, K.H.L. Zhang, B. Lin, S.H. Wu, T. Y. Lei, X.Y. Guo, G.L. Zhu, X. Jian, J. Xiong, E. Traversa, S.X. Dou, W.D. He, An upgraded lithium ion battery based on a polymeric separator incorporated with anode active materials, Adv. Energy. Mater. 9 (2019) 1803627, https://doi.org/ 10.1002/aenm.201803627. [30] Z. Feng, X.L. Ma, C.B. Cao, J.L. Li, Y.Q. Zhu, Poly(vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium-ion batteries, J. Power Sources 251 (2014) 423–431, https://doi.org/10.1016/j.jpowsour.2013.11.079. [31] E.S. Choi, S.Y. Lee, Particle size-dependent, tunable porous structure of a SiO2/poly (vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery, J. Mater. Chem. 21 (2011) 14747–14754, https://doi.org/10.1039/c1jm12246k. [32] C.M. Costa, M. Kundu, V.F. Cardoso, A.V. Machado, M.M. Silva, S. Lanceros- Mendez, Silica/poly(vinylidene fluoride) porous composite membranes for lithiumion battery separators, J. Membr. Sci. 564 (2018) 842–851, https://doi.org/ 10.1016/j.memsci.2018.07.092. [33] Y. Chen, Y. Li, M. Yip and N. Tai, Composites Science and Technology, 2013, 80, 80-86. [34] S.-S. Tzeng and F.-Y. Chang, Materials Science and Engineering: A, 2001, 302, 258-267. [35] Chung, D.D.L. (2000). Materials for electromagnetic interference shielding, Journal of Materials Engineering and Performance., 9–350-354. [36] Ting, T. H., Yu, R. P., Jau, Y. N. (2011). Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2–40 GHz, Materials Chemistry and Physics, 126, 364-36.

RADAR VE DAHA GENİŞ FREKANS ARALIĞINDA KOLEMANİT/PANI/SiO2 KOMPOZİTLERİN ELEKTROMANYETİK KALKANLAMA PERFORMANSLARI

Yıl 2020, Cilt: 13 Sayı: 1, 34 - 42, 30.06.2020
https://doi.org/10.20854/bujse.742821

Öz

In this study, colemanite-SiO2 were produced by using mixed oxide technique. The composition was formed with various proportions for the structural analysis. The results of the structural analysis indicated that second phase did not form in colemanite and SiO2. Addionality, the colemanite/polyaniline/SiO2 composites were produced by hot pressing using the compositions of colemanite-SiO2 in different proportions and aniline. The weight ratios of colemanite-SiO2 and aniline were 1:1 respectively and epoxy resin was used to produce microwave shielding composites. The microwave shielding performances of colemanite/polyaniline/SiO2 composites were investigated by shielding effectiveness in 8 –18 GHz using two–port vector network analyzer. A minimum of – 41.1 dB shielding effectiveness performance was obtained in 16.09 GHz at the thickness of 1.5 mm. This shielding performance can be modulated simply by controlling the content of polyaniline and content of colemanite-SiO2 in the samples for the required frequency bands.

Kaynakça

  • [1] Yang, S., Lozano, K., Lomeli, A., Foltz H. D., and Jones, R. Composites Part A: Applied Science and Manufacturing, 2005, 36, 691-697. [2] Li, N., Huang, Y., Du, F.,. He, X., Lin, X., Gao, H., Ma, Y.,. Li, F., Chen Y., and Eklund,P. C., Nano Letters,2006, 6, 1141-1145. [3] M. H. Al-Saleh and U. Sundararaj, Carbon, 2009, 47, 1738-1746. [4] F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y.Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science 353(6304) (2016) 1137-1140. [5] N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J. K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding, Adv. Mater. 26(31) (2014) 5480-5487. [6] J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z.Z. Yu, Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding, Adv. Mater. 29(38) (2017) 1702367. [7] F. Kargar, Z. Barani, M. Balinskiy, A.S. Magana, J.S. Lewis, A.A. Balandin,Dual-functional graphene composites for electromagnetic shielding and thermal management, Adv. Electron. Mater. 5(1) (2019) 1800558. [8] X. Jia, B. Shen, Z. Chen, L. Zhang, W. Zheng, High-performance carbonized waste corrugated boards reinforced with epoxy coating as lightweight structured electromagnetic shields, ACS Sustainable Chem. Eng. 7(22) (2019) 18718-18725. [9] X. Zhang, Y. Rao, J. Guo, G. Qin, Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption, Carbon. 96 (2016) 972-979. [10] C.S. Zhang, Q.-Q. Ni, S.Y. Fu, K. Kurashiki, Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer, Compos. Sci. Technol. 67(14) (2007) 2973-2980. [11] S.H. Lee, S. Yu, F. Shahzad, J.P. Hong, W.N. Kim, C. Park, S.M. Hong, C.M. Koo, Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding, Compos. Sci. Technol. 144 (2017) 57-62. [12] W.L. Song, P. Wang, L. Cao, A. Anderson, M.J. Meziani, A.J. Farr, Y.P. Sun, Polymer/boron nitride nanocomposite materials for superior thermal transport performance, Angew. Chem. Int. Ed. 51(26) (2012) 6498-6501. [13] M.J. Meziani, W.L. Song, P. Wang, F. Lu, Z. Hou, A. Anderson, H. Maimaiti, Y.-P. Sun, Boron nitride nanomaterials for thermal management applications, Chemphyschem 16(7) (2015) 1339-1346. [14] Z. Chen, D. Yi, B. Shen, L. Zhang, X. Ma, Y. Pang, L. Liu, X. Wei, W. Zheng, Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding, Carbon 139 (2018) 271-278. [15] P. Li, Z. Jin, L. Peng, F. Zhao, D. Xiao, Y. Jin, G. Yu, Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels, Adv. Mater. 30(18) (2018) 1800124. [16] A. I. Gopalan, S. Komathi, N. Muthuchamy, K. P. Lee, M.J. Whitcombe, L. Dhana, G. Sai-Anand, Functionalized conjugated polymers for sensing and molecular imprinting applications, Prog. Polym. Sci. 88 (2019) 1-129. [17] W. Zhang, X. Zhang, Z. Wu, K. Abdurahman, Y. Cao, H. Duan, D. Jia, Mechanical, electromagnetic shielding and gas sensing properties of flexible cotton fiber/polyaniline composites, Compos. Sci. Technol. (2019) 107966. [18] Schnitzler, D.C., Meruvia, M.S., Hümmelgen, I., Aldo, J., Zarbin, G. Preparation and Characterization of Novel Hybrid Materials Formed from (Ti,Sn)O2 Nanoparticles and Polyaniline Chemistry of Materials 15 (24) 2003: pp. 4658 – 4665.https://doi.org/10.1021/cm034292p [19] Ma, X., Zhang, X., Li, Y., Li, G., Wang, M., Chen, H., Mi, Y. Preparation of Nano-Structured Polyaniline Composite Film Via ‘‘Carbon Nanotubes Seeding’’ Approach and its Gas-Response Studies Macromolecular Materials and Engineering 1 (291) 2006: pp. 75 – 82. https://doi.org/10.1002/mame.200500296 [20] Sahin, E.I., Paker S., Kartal M., 2019 “Characterization, Production and Microwave Absorbing Properties of Polyaniline-NiFe2O4: Tb Composites” ,Materials Science (Medziagotyra). Vol. 25, 2019: pp. 322-327. [21] Y. Zhang, Z. Yang, Y. Yu, B. Wen, Y. Liu, M. Qiu, Tunable electromagnetic interference shielding ability in a one-dimensional bagasse fiber/polyaniline heterostructure, ACS Appl. Polym. Mater. 1 (2019) 737-745. [22] M.S. Celik, F. Suner, A Thermodynamic Analysis of the Decrepitation Process, Thermochim. Acta. 1995,254, 167. [23] R.L. Frost, Y. Xi, R. Scholz, F.M. Belotti, M. Cândido Filho, Infrared and Raman Spectroscopic Characterization of the Borate Mineral Colemanite-CaB3O4(OH)3•H2O-Implications for the Molecular Structure, J. Mol. Struct. 2013,1037, 23. doi:10.1016/j.molstruc.2012.11.047. [24] Stober, W., Fink, A., and Bohn, E., J. Colloid Interface Sci. 26, 62 (1968). [25] Xia, Y. N., Gates, B., and Yin, Y. D., Adv. Mater. 12, 693 (2000) [26] J.N. Pereira, C.M. Costa, S.L. Mendez, Polymer composites and blends for battery separators: state of the art, challenges and future trends, J. Power Sources 281 (2015) 378–398, https://doi.org/10.1016/j.jpowsour.2015.02.010. [27] C.M. Costa, J.L.G. Ribelles, S.L. Mendez, G.B. Appetecchi, B. Scrosati, Poly (vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems, J. Power Sources 245 (2014) 779–786, https://doi. org/10.1016/j.jpowsour.2013.06.151. [28] N. Angulakshmi, A.M. Stephan, Electrospun trilayer polymeric membranes as separator for lithium–ion batteries, Electrochim. Acta 127 (2014) 167–172, https://doi.org/10.1007/s10570-017-1225-x. [29] D.J. Chen, Z.Q. Zhou, C. Feng, W.Q. Lv, Z.H. Wei, K.H.L. Zhang, B. Lin, S.H. Wu, T. Y. Lei, X.Y. Guo, G.L. Zhu, X. Jian, J. Xiong, E. Traversa, S.X. Dou, W.D. He, An upgraded lithium ion battery based on a polymeric separator incorporated with anode active materials, Adv. Energy. Mater. 9 (2019) 1803627, https://doi.org/ 10.1002/aenm.201803627. [30] Z. Feng, X.L. Ma, C.B. Cao, J.L. Li, Y.Q. Zhu, Poly(vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium-ion batteries, J. Power Sources 251 (2014) 423–431, https://doi.org/10.1016/j.jpowsour.2013.11.079. [31] E.S. Choi, S.Y. Lee, Particle size-dependent, tunable porous structure of a SiO2/poly (vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery, J. Mater. Chem. 21 (2011) 14747–14754, https://doi.org/10.1039/c1jm12246k. [32] C.M. Costa, M. Kundu, V.F. Cardoso, A.V. Machado, M.M. Silva, S. Lanceros- Mendez, Silica/poly(vinylidene fluoride) porous composite membranes for lithiumion battery separators, J. Membr. Sci. 564 (2018) 842–851, https://doi.org/ 10.1016/j.memsci.2018.07.092. [33] Y. Chen, Y. Li, M. Yip and N. Tai, Composites Science and Technology, 2013, 80, 80-86. [34] S.-S. Tzeng and F.-Y. Chang, Materials Science and Engineering: A, 2001, 302, 258-267. [35] Chung, D.D.L. (2000). Materials for electromagnetic interference shielding, Journal of Materials Engineering and Performance., 9–350-354. [36] Ting, T. H., Yu, R. P., Jau, Y. N. (2011). Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2–40 GHz, Materials Chemistry and Physics, 126, 364-36.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ethem İlhan Şahin

Mehriban Emek

Burcu Ertug

Mesut Kartal

Yayımlanma Tarihi 30 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 13 Sayı: 1

Kaynak Göster

APA Şahin, E. İ., Emek, M., Ertug, B., Kartal, M. (2020). ELECTROMAGNETIC SHIELDING PERFORMANCES OF COLEMANITE / PANI / SIO2 COMPOSITES IN RADAR AND WIDER FREQUENCY RANGES. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 13(1), 34-42. https://doi.org/10.20854/bujse.742821
AMA Şahin Eİ, Emek M, Ertug B, Kartal M. ELECTROMAGNETIC SHIELDING PERFORMANCES OF COLEMANITE / PANI / SIO2 COMPOSITES IN RADAR AND WIDER FREQUENCY RANGES. BUJSE. Haziran 2020;13(1):34-42. doi:10.20854/bujse.742821
Chicago Şahin, Ethem İlhan, Mehriban Emek, Burcu Ertug, ve Mesut Kartal. “ELECTROMAGNETIC SHIELDING PERFORMANCES OF COLEMANITE / PANI / SIO2 COMPOSITES IN RADAR AND WIDER FREQUENCY RANGES”. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 13, sy. 1 (Haziran 2020): 34-42. https://doi.org/10.20854/bujse.742821.
EndNote Şahin Eİ, Emek M, Ertug B, Kartal M (01 Haziran 2020) ELECTROMAGNETIC SHIELDING PERFORMANCES OF COLEMANITE / PANI / SIO2 COMPOSITES IN RADAR AND WIDER FREQUENCY RANGES. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 13 1 34–42.
IEEE E. İ. Şahin, M. Emek, B. Ertug, ve M. Kartal, “ELECTROMAGNETIC SHIELDING PERFORMANCES OF COLEMANITE / PANI / SIO2 COMPOSITES IN RADAR AND WIDER FREQUENCY RANGES”, BUJSE, c. 13, sy. 1, ss. 34–42, 2020, doi: 10.20854/bujse.742821.
ISNAD Şahin, Ethem İlhan vd. “ELECTROMAGNETIC SHIELDING PERFORMANCES OF COLEMANITE / PANI / SIO2 COMPOSITES IN RADAR AND WIDER FREQUENCY RANGES”. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 13/1 (Haziran 2020), 34-42. https://doi.org/10.20854/bujse.742821.
JAMA Şahin Eİ, Emek M, Ertug B, Kartal M. ELECTROMAGNETIC SHIELDING PERFORMANCES OF COLEMANITE / PANI / SIO2 COMPOSITES IN RADAR AND WIDER FREQUENCY RANGES. BUJSE. 2020;13:34–42.
MLA Şahin, Ethem İlhan vd. “ELECTROMAGNETIC SHIELDING PERFORMANCES OF COLEMANITE / PANI / SIO2 COMPOSITES IN RADAR AND WIDER FREQUENCY RANGES”. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 13, sy. 1, 2020, ss. 34-42, doi:10.20854/bujse.742821.
Vancouver Şahin Eİ, Emek M, Ertug B, Kartal M. ELECTROMAGNETIC SHIELDING PERFORMANCES OF COLEMANITE / PANI / SIO2 COMPOSITES IN RADAR AND WIDER FREQUENCY RANGES. BUJSE. 2020;13(1):34-42.

Cited By