Derleme
BibTex RIS Kaynak Göster

Gıda Mikrokapsülasyonunda Aljinat Kullanımı

Yıl 2018, Cilt: 8 Sayı: 1/2, 16 - 28, 27.06.2018

Öz

Mikroenkapsülasyon
hassas bileşenlerin koruyucu bir duvar materyali içinde fiziksel olarak
sarılmasını ve karşıt reaksiyonlardan, uçucu kaybından ya da besinsel
bozulmalardan çekirdek materyallerin ya da böyle bileşenlerin korunmasını
sağlayan bir teknolojidir. Günümüzde mikroenkapsülasyon, gıda, tekstil,
farmakoloji, kozmetik, agrokimyasal ve elektronik gibi endüstrinin çeşitli
alanlarında kullanılmaktadır. Mikroenkapsülasyon tekniğinin gıda endüstrisinde
en yaygın kullanım amacı çevre koşullarına olan reaktivitesini azaltarak
bozunmadan çekirdek materyalini korumak ve raf ömrünü uzatmaktır.
Mikroenkapsülasyon tekniğinde kaplama materyali olarak çoğunlukla, nişasta,
chitosan, aljinat gibi karbonhidratlar; metil selüloz, etil selüloz gibi
selülozlar; gum arabic, karragenan gibi gumlar; wax, parafin gibi yağlar;
gluten, kazein gibi proteinler kullanılmaktadır. Aljinatlar kahverengi deniz
yosunundan elde edilen (1-4) bağlı β-ᴅ-mannuronik asitin (M) ve α-ʟ-guluronik
asitten (G) oluşan bir anyonik polisakkarittir.   Mikroenkapsülasyonda yaygın kullanılan aljinatın
biyolojik olarak geri dönüşümlü, biyo-uyumlu ve ucuz olması, bağırsaklarda
tamamen çözünebilir olması kabuk materyali olarak kullanım kolaylığı
yaratmaktadır. Bu derlemede, mikroenkapsülasyon teknolojisi, kaplama materyali
olarak aljinat kullanımı ve aljinatın mikroenkapsülasyon tekniği kullanılarak
gıda endüstrisindeki uygulamaları hakkında bilgi verilmektedir

Kaynakça

  • Abarca, R.L., Rodríguez, F.J., Guarda, A., Galotto, M.J., Bruna, J.E. (2016). Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chemistry, 196, 968–975.
  • Adhikari, K., Mustapha, A., Grün, I.U. and Fernando, L. (2000). Viability of microencapsulated Bifidobacteria in set yogurt during refrigerated storage. Journal of Dairy Science, 83, 9, 1946-1951.
  • Alonso, M.L., Laza, J.M., Rosa, M., Alonso, R.M., Jiménez, R.M., Vilas, J.L., Fañanás, R. (2014). Pesticides microencapsulation, A safe and sustainable industrial process. Journal of Chemical Technology and Biotechnology, 89, 1077–1085.
  • Anwekar, H., Patel, S., Singhai, A.K. (2011). Liposome- as drug carriers. Journal of Pharmaceutical Sciences and Life Science, 2, 7, 945-951.
  • Beirão-da-Costa, S.B., Duarte, C., Bourbon, A.I., Pinheiro, A.C., Januário, M.I.N., Vicente, A.A., Beirão-da-Costa, M.L., Delgadillo, I. (2013). Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocolloids, 33, 199-206.
  • Brownlee, I.A., Allen, A., Pearson, J.P., Dettmor, P.W., Havler, M.E., Atherton, M.R., Onsøyen E. (2005). Alginate as a Source of Dietary Fiber. Critical Reviews Food Science Nutrition, 45, 497-510.
  • Burgain, J., Gaiani, C., Linder, M., Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering,104, 467–483.
  • Calvo, P., Castaño, Á.L., Hernández, M.T., González-Gómez, D. (2011). Effects of microcapsule constitution on the quality of microencapsulated walnut oil. European Journal of Lipid Science and Technology, 113, 1273–1280.
  • Carvalho, I.T., Estevinho, B.N., Santos, L. (2015). Application of microencapsulated essential oils in cosmetic and personal healthcare products a review. International Journal of Cosmetic Science, 1–11.
  • Chan, E.S. (2011). Preparation of Ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties. Carbohydrate Polymers, 84, 1267–1275.
  • Chew, S.C. and Nyam, K.L. (2016). Microencapsulation of kenaf seed oil by co-extrusion technology. Journal of Food Engineering, 175, 43-50.
  • Desai, K.G.H. and Park, H.J. (2005). Recent Developments in Microencapsulation of Food Ingredients. Drying Technology, 23, 1361–1394.
  • Dong, Z., Ma, Y., Hayat, K., Jia, C., Xia, S., Zhang, X. (2011). Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. Journal of Food Engineering, 104, 455–460.
  • Draget, K.I., Smidsrød, O., Skjåk-Bræk, G. (2005). Alginates from algae. Polysaccharides and Polyamides in the Food Industry. Properties, Production, and Patents. Edited by A. Steinbüchel and S. K. Rhee. 1-30.
  • Estevinho, B.N., Rocha, F., Santos, L., Alves, A. (2013). Microencapsulation with chitosan by spray drying for industry applications- A review. Trends in Food Science & Technology, 31, 138-155.
  • Fernandes, R.V.B., Borges, S.V., Botrel, D.A., Silva, E.K., Gomes da Costa, J.M., Queiroz, F. (2013). Microencapsulation of Rosemary Essential Oil: Characterization of Particles. Drying Technology, 31, 11, 1245-1254.
  • Fujiwara, G.M., Campos, R., Costa, C.K., Dias, G.J.F., Miguel, O.G., Miguel, M.D., Marques, F.A., Zanin, S.M.Z. (2013). Production and characterization of alginate-starch-chitosan microparticles containing stigmasterol through the external ionic gelation technique. Brazilian Journal of Pharmaceutical Sciences, 49, 3, 537-547.
  • Geethadevi, R. and Maheshwari, V. (2015). Anti bacterial assessment on Bamboo and Tencel fabrics with herbal oil by micro-encapsulation technique. Research Journal of Chemistry and Environment, 19, 8, 33-42.
  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40, 1107–1121.
  • Gouin, S. (2004). Microencapsulation: industrial appraisal of existing Technologies and trends. Trends in Food Science & Technology, 15, 330–347. Han, Y., Zeng, Q., Li, H., Chang, J. (2013). The calcium silicate/alginate composite: Preparation and evaluation of its behavior as bioactive injectable hydrogels. Acta Biomaterialia, 9, 9107–9117.
  • Heidebach, T., Först, P., Kulozik, U. (2012). Microencapsulation of Probiotic Cells for Food Applications. Critical Reviews in Food Science and Nutrition, 52, 4, 291-311.
  • Hyon, J., Seo, C., Yoo, I., Song, S., Kang, Y. (2016). Glassy photonic inks encapsulated in core–shell microcapsules for local electric field sensors. Sensors and Actuators B, 223, 878–883.
  • Kailasapathy, K. (2006). Survival of free encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT- Food Science and Technology, 39: 1221-1227.
  • Khalil, A.H. and Mansour, E.H. (1998). Alginate Encapsulated Bifidobacteria Survival in Mayonnaise. Journal of Food Science, 63, 4, 702-705. Khong, T.T., Aarstad, O.A., Skjåk-Bræk, G., Draget, K.I., Vårum, K.J. (2013). Gelling Concept Combining Chitosan and Alginate Proof of Principle. Biomacromolecules,14, 2765−2771.
  • Koç, M., Sakin, M., Kaymak-Ertekin, F. (2010). Mikroenkapsülasyon ve gıda teknolojisinde kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 16, 1, 77-86.
  • Laohasongkram, K., Mahamaktudsanee, T., Chaiwanichsiri, S. (2011). Microencapsulation of Macadamia oil by spray drying. Procedia Food Science, 1, 1660 – 1665.
  • Mirzaei, H., Pourjafar, H. and Homayouni, A. (2012). Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus L A 5 and sensory properties in Iranian white brined cheese. Food Chemistry, 132, 4, 1966-1970.
  • Moe, S., Draget, K.I., Skjak-Braek, G., Smidsrod, O. (1995). Alginates. In: Food polysaccharides and their applications. pp 245 Stephen, A.M., Ed., New York, Marcel Decker.
  • Mortazavian, A.M. ve Sohrabvandi, S. (2007). Probiotics and food probiotic products: based on dairy probiotic products (Ed. A.M. Mortazavian), 131-169, Iran: Eta Publication.
  • Nazzaro, F., Orlando, P., Fratianni, F., Coppola, R. (2012). Microencapsulation in food science and biotechnology. Current Opinion in Biotechnology, 23, 182–186.
  • Onwulata, C.I. (2013). Microencapsulation and functional bioactive foods. Journal of Food Processing and Preservation, 37, 510–532.
  • Özcan, T ve Altun, B. (2013). Süt Ürünlerinde Probiyotik Bakterilerin Mikroenkapsülasyonu I: Enkapsülasyon Teknikleri. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 27, 2, 93-104.
  • Öztürk F.S. (2016). Mikroenkapsüle biberiye esansiyel (uçucu) yağının in vitro antioksidan etkisinin araştırılması. (Yayınlanmamış yüksek lisans tezi). İnönü Üniversitesi, Malatya.
  • Pawar, S.N. ve Edgar, K.J. (2012). Alginate derivatization: A review of chemistry, properties and applications. Biomaterials, 33, 3279-3305.
  • Rocha, G.A., Fávaro-Trindade, C.S., Grosso, C.R.F. (2012). Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules. Food and Bioproducts Processing, 90, 37–42.
  • Rodea-González, D.A., Cruz-Olivares, J., Román-Guerrero, A., Rodríguez-Huezo, M.E., Vernon-Carter, E.J., Pérez-Alonso, C. (2012). Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. Journal of Food Engineering, 111, 102–109.
  • Santos, M.G., Bozza, F.T., Thomazini, M., Favaro-Trindade, C.S. (2015). Microencapsulation of xylitol by double emulsion followed by complex coacervation. Food Chemistry, 171 32–39.
  • Sardar, B.R., Singhal, RS. (2013). Characterization of co-crystallized sucrose entrapped with cardamom oleoresin. Journal of Food Engineering, 117, 521–529.
  • Scalia, S., Coppi, G., Iannuccelli, V. (2011). Microencapsulation of a cyclodextrin complex of the UV filter, butyl methoxydibenzoylmethane: In vivo skin penetration studies. Journal of Pharmaceutical and Biomedical Analysis, 54, 345–350.
  • Shah, N.P. (2000). Probiotic bacteria: selective enumeration and survival in dairy foods. Journal of Dairy Science, 83, 894-907.
  • Sheu, T.Y., Marshall, R.T. and Heymann, H. (1993). Improving survival of culture bacteria in frozen dessert by micro entrapment. Journal of Dairy Science, 76, 7, 1902-1907.
  • Silva, P.T., Fries, L.L.M., Menezes, C.R., Holkem, A.T., Schwan, C.L., Wigmann, É.F., Bastos, J.O., Cristiane de Bona da Silva, C.B. (2014). Microencapsulation: concepts, mechanisms, methods and some applications in food technology. Ciência Rural, Santa Maria, 44, 7, 1304-1311.
  • Simpson, N.E., Grant, S.C., Blackband, S.J. (2003). Constantidinis I., NMR properties of alginate microbeads. Biomaterials, 24, 4941-4948.
  • Souza, J.M., Caldas, A.L., Tohidi, S.D., Molina, J., Souto, A.P., Fangueiro, R., Zille, A. (2014). Properties and controlled release of chitosan microencapsulated limonene oil. Brazilian Journal of Pharmacognosy, 24, 691-698.
  • Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P. and Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival isimulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology, 62,1, 47-55.
  • Tan, L.H., Chan, L.W., Heng, P.W.S. (2009). Alginate/starch composites as wall material to achieve microencapsulation with high oil loading. Journal of Microencapsulation, 26, 3, 263-271.
  • Vicini, S., Castellano, M., Mauri, M., Marsano, E. (2015). Gelling process for sodium alginate: New technical approach by usingcalcium rich micro-spheres. Carbohydrate Polymers, 134, 767–774.
  • Woranucha, S., Yoksana, R. (2013). Eugenol-loaded chitosan nanoparticles: II. Application in biobased plastics for active packaging. Carbohydrate Polymers, 96, 586-592.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

İncilay Gökbulut

Fatma Sezer Öztürk Bu kişi benim

Yayımlanma Tarihi 27 Haziran 2018
Gönderilme Tarihi 23 Ocak 2018
Kabul Tarihi 8 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 1/2

Kaynak Göster

APA Gökbulut, İ., & Öztürk, F. S. (2018). Gıda Mikrokapsülasyonunda Aljinat Kullanımı. Batman Üniversitesi Yaşam Bilimleri Dergisi, 8(1/2), 16-28.