Araştırma Makalesi
BibTex RIS Kaynak Göster

Hafif Yapı Malzemelerinin Isıl İletkenlik Özelliklerinin Yapay Sinir Ağları Kullanılarak Tahmin Edilmesi

Yıl 2020, Cilt: 10 Sayı: 1, 28 - 41, 30.06.2020

Öz

Binaların ısıtılması ve soğutulması için
tüketilen enerjinin artmasıyla birlikte ısıl performansı yüksek olan bina
malzemelerine olan ihtiyaç günden güne artmaktadır. Bina malzemelerinin ısıl
performansı ise direk olarak malzemelerin termofiziksel özellikleri ile değişim
göstermektedir. Bu çalışmada, binalarda enerji verimliliğini sağlamak için,
uygun mekanik özellikler korunarak yüksek ısı yalıtım özelliğine sahip olan
yeni yapı malzemeleri elde etmek amacıyla deneysel ve teorik bir çalışma
gerçekleştirilmiştir. Bu amaçla, sabit su-çimento oranında, normal agrega
yerine hacimce %10, %20, %30, %40 ve %50 oranlarında pomza, genleştirilmiş
perlit ve lastik agregaları kullanılarak çeşitli beton numuneleri
hazırlanmıştır. 102 adet beton numunesi farklı bileşimlerde ve değişik
malzemeler kullanılarak üretilmiştir. Tüm numunelerin mekanik testleri yapılmış,
ısıl iletkenlik özellikleri sıcak disk yöntemi ile ASTM ve EN standartlarına
uygun olarak belirlenmiştir. Üretilen numunelerden deneysel olarak elde edilen
ısıl iletkenlik özelliği geliştirilen yapay sinir ağı çıkışlarıyla
karşılaştırılmış ve sonuçlar incelenmiştir. Geliştirilen yapay sinir ağında
sadece mekanik özellikler giriş olarak kullanılmış ve malzemelerin ısıl
iletkenlik ile ilişkisi araştırılmıştır. Yapay sinir ağı girişi olarak beton
tipi, agrega oranı, yoğunluk, basma dayanımı, porozite ve ısıl iletkenlik
olarak belirlenmiştir. Çıktılar karşılaştırıldığında, bulunan sonuçların
birbirleriyle uyumlu olduğu ve hafif betonlara ait ısıl iletkenlik değeri
%-1.09 ile %6,4 arasında bir hata ile tahmin edilmesinin kabul edilebilir
olduğu görülmüştür.
 

Kaynakça

  • Alshihri, M. M., Azmy, A. M., & El-Bisy, M. S. (2009). Neural Networks for Predicting Compressive Strength of Structural Light Weight Concrete, Construction and Building Materials, 23, 6, 2214-2219.
  • Asan, H. (2006). Numerical Computation of Time Lags and Decrement Factors for Different Building Materials, Building and Environment, 41, 5, 615-620.
  • Asan, H., & Sancaktar, Y. S. (1998). Effects of Wall's Thermophysical Properties On Time Lag and Decrement Factor, Energy and Buildings, 28, 2, 159-166.
  • Bansal, K., Chowdhury, S., & Gopal, M. R. (2008). Development of CLTD Values for Buildings Located in Kolkata, India, Applied Thermal Engineering, 28, 10, 1127-1137.
  • Barrios, G., Huelsz, G., Rechtman, R., & Rojas, J. (2011). Wall/roof thermal Performance Differences Between Air-Conditioned and Non Air-Conditioned Rooms, Energy and Buildings, 43, 1, 219-223.
  • Dağsöz, A. K., Işıkel, K., & Bayraktar, K. G. (1999). Yapılarda Sıcak Etkisinin Getirdiği Problemlerin Isı Yalıtımı İle Çözümü ve Enerji Tasarrufu, IV. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi, 329-339.
  • Dias, W. P. S., & Pooliyadda, S. P. (2001). Neural Networks for Predicting Properties of Concretes with Admixtures, Construction and Building Materials, 15, 7, 371-379.
  • Eldin, N. N., & Senouci, A. B. (1994). Measurement and Prediction of the Strength of Rubberized Concrete, Cement and Concrete Composites, 16, 4, 287-298.
  • Fausett, L., (1994). Fundamentals of Neural Networks: Architectures, Algorithms, and Applications (No. 0063), Prentice-Hall.
  • Freeman, J. A., & Skapura, D. M. (1991). Algorithms, Applications, and Programming Techniques, Addison-Wesley Publishing Company, USA.
  • Handbook, A. S. H. R. A. E. (2007). HVAC applications, ASHRAE Handbook, Fundamentals. insulation placements, Applied energy, 112, 325-337.
  • Jin, X., Zhang, X., Cao, Y., & Wang, G. (2012). Thermal Performance Evaluation of the Wall Using Heat Flux Time Lag and Decrement Factor, Energy and Buildings, 47, 369-374.
  • Khan, M. I. (2002). Factors Affecting the Thermal Properties of Concrete and Applicability of Its Prediction Models, Building and Environment, 37, 6, 607-614.
  • Kim, K. H., Jeon, S. E., Kim, J. K., & Yang, S. (2003). An Experimental Study on Thermal Conductivity of Concrete, Cement and Concrete Research, 33, 3, 363-371.
  • Kontoleon, K. J., Theodosiou, T. G., & Tsikaloudaki, K. G. (2013). The Influence of Concrete Density and Conductivity On Walls’ Thermal Inertia Parameters Under a Variety of Masonry and Insulation Placements, Applied Energy,112,325–337.
  • Lai, S., & Serra, M. (1997). Concrete Strength Prediction By Means of Neural Network, Construction and Building Materials, 11, 2, 93-98.
  • Masri, S. F., Chassiakos, A. G., & Caughey, T. K. (1993). Identification of Nonlinear Dynamic Systems Using Neural Networks, Journal of applied mechanics, 60, 1, 123-133.
  • McQuiston, F. C., & Parker, J. D. (1994). Heating, Ventilating, and Air Conditioning: Analysis and Design, American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • McQuiston, F. C., & Spitler, J. D. (1992). Cooling and Heating Load Calculation Manual, American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • Ni, H. G., & Wang, J. Z. (2000). Prediction of Compressive Strength of Concrete by Neural Networks, Cement and Concrete Research, 30, 8, 1245-1250.
  • Oktay, H., Yumrutaş, R., & Akpolat, A. (2015). Mechanical and Thermophysical Properties of Lightweight Aggregate Concretes, Construction and Building Materials, 96, 217-225.
  • Threlkeld, J. L. (1998). Thermal Environmental Engineering. Prentice Hall.
  • Zhang, Y., Chen, Q., Zhang, Y., & Wang, X. (2013). Exploring Buildings’ Secrets: The Ideal Thermophysical Properties of a Building’s Wall for Energy Conservation, International Journal of Heat and Mass Transfer, 65, 265-273.
  • Zhang, Y., Du, K., He, J., Yang, L., Li, Y., & Li, S. (2014). Impact Factors Analysis on the Thermal Performance of Hollow Block Wall, Energy and Buildings, 75, 330-341.
  • Zhang, Y., Lin, K., Zhang, Q., & Di, H. (2006). Ideal Thermophysical Properties for Free-Cooling (or heating) Buildings with Constant Thermal Physical Property Material, Energy and Buildings, 38, 10, 1164-1170.

Artificial Neural Network-Based Prediction of Thermal Properties of Light Building Materials

Yıl 2020, Cilt: 10 Sayı: 1, 28 - 41, 30.06.2020

Öz

The growing concern about energy consumption of heating and cooling of buildings has led to a demand for improved thermal performances of building materials. In this study, an experimental investigation is performed to predict the thermal insulation properties of wall and roof structures of which the mechanical properties are known, by using back-propagation artificial neural network (ANNs) method. The produced samples are cement based and have relatively high insulation properties for energy efficient buildings. In this regard, 102 new samples and their compositions are produced and their mechanical and thermal properties are tested in accordance with ASTM and EN standards. Then, comparisons have been made between the determined thermal conductivity of the newly produced structures, which are obtained from experimental method and ANN method that uses mechanical properties as input parameters. From the test results, since the percentage errors in the thermal conductivity values between experimental data and neural network prediction vary from -1.09% to 6.4%, It can be concluded that the prediction of the artificial neural network has proceed in the correct manner. 

Kaynakça

  • Alshihri, M. M., Azmy, A. M., & El-Bisy, M. S. (2009). Neural Networks for Predicting Compressive Strength of Structural Light Weight Concrete, Construction and Building Materials, 23, 6, 2214-2219.
  • Asan, H. (2006). Numerical Computation of Time Lags and Decrement Factors for Different Building Materials, Building and Environment, 41, 5, 615-620.
  • Asan, H., & Sancaktar, Y. S. (1998). Effects of Wall's Thermophysical Properties On Time Lag and Decrement Factor, Energy and Buildings, 28, 2, 159-166.
  • Bansal, K., Chowdhury, S., & Gopal, M. R. (2008). Development of CLTD Values for Buildings Located in Kolkata, India, Applied Thermal Engineering, 28, 10, 1127-1137.
  • Barrios, G., Huelsz, G., Rechtman, R., & Rojas, J. (2011). Wall/roof thermal Performance Differences Between Air-Conditioned and Non Air-Conditioned Rooms, Energy and Buildings, 43, 1, 219-223.
  • Dağsöz, A. K., Işıkel, K., & Bayraktar, K. G. (1999). Yapılarda Sıcak Etkisinin Getirdiği Problemlerin Isı Yalıtımı İle Çözümü ve Enerji Tasarrufu, IV. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi, 329-339.
  • Dias, W. P. S., & Pooliyadda, S. P. (2001). Neural Networks for Predicting Properties of Concretes with Admixtures, Construction and Building Materials, 15, 7, 371-379.
  • Eldin, N. N., & Senouci, A. B. (1994). Measurement and Prediction of the Strength of Rubberized Concrete, Cement and Concrete Composites, 16, 4, 287-298.
  • Fausett, L., (1994). Fundamentals of Neural Networks: Architectures, Algorithms, and Applications (No. 0063), Prentice-Hall.
  • Freeman, J. A., & Skapura, D. M. (1991). Algorithms, Applications, and Programming Techniques, Addison-Wesley Publishing Company, USA.
  • Handbook, A. S. H. R. A. E. (2007). HVAC applications, ASHRAE Handbook, Fundamentals. insulation placements, Applied energy, 112, 325-337.
  • Jin, X., Zhang, X., Cao, Y., & Wang, G. (2012). Thermal Performance Evaluation of the Wall Using Heat Flux Time Lag and Decrement Factor, Energy and Buildings, 47, 369-374.
  • Khan, M. I. (2002). Factors Affecting the Thermal Properties of Concrete and Applicability of Its Prediction Models, Building and Environment, 37, 6, 607-614.
  • Kim, K. H., Jeon, S. E., Kim, J. K., & Yang, S. (2003). An Experimental Study on Thermal Conductivity of Concrete, Cement and Concrete Research, 33, 3, 363-371.
  • Kontoleon, K. J., Theodosiou, T. G., & Tsikaloudaki, K. G. (2013). The Influence of Concrete Density and Conductivity On Walls’ Thermal Inertia Parameters Under a Variety of Masonry and Insulation Placements, Applied Energy,112,325–337.
  • Lai, S., & Serra, M. (1997). Concrete Strength Prediction By Means of Neural Network, Construction and Building Materials, 11, 2, 93-98.
  • Masri, S. F., Chassiakos, A. G., & Caughey, T. K. (1993). Identification of Nonlinear Dynamic Systems Using Neural Networks, Journal of applied mechanics, 60, 1, 123-133.
  • McQuiston, F. C., & Parker, J. D. (1994). Heating, Ventilating, and Air Conditioning: Analysis and Design, American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • McQuiston, F. C., & Spitler, J. D. (1992). Cooling and Heating Load Calculation Manual, American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • Ni, H. G., & Wang, J. Z. (2000). Prediction of Compressive Strength of Concrete by Neural Networks, Cement and Concrete Research, 30, 8, 1245-1250.
  • Oktay, H., Yumrutaş, R., & Akpolat, A. (2015). Mechanical and Thermophysical Properties of Lightweight Aggregate Concretes, Construction and Building Materials, 96, 217-225.
  • Threlkeld, J. L. (1998). Thermal Environmental Engineering. Prentice Hall.
  • Zhang, Y., Chen, Q., Zhang, Y., & Wang, X. (2013). Exploring Buildings’ Secrets: The Ideal Thermophysical Properties of a Building’s Wall for Energy Conservation, International Journal of Heat and Mass Transfer, 65, 265-273.
  • Zhang, Y., Du, K., He, J., Yang, L., Li, Y., & Li, S. (2014). Impact Factors Analysis on the Thermal Performance of Hollow Block Wall, Energy and Buildings, 75, 330-341.
  • Zhang, Y., Lin, K., Zhang, Q., & Di, H. (2006). Ideal Thermophysical Properties for Free-Cooling (or heating) Buildings with Constant Thermal Physical Property Material, Energy and Buildings, 38, 10, 1164-1170.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makale
Yazarlar

Süleyman Polat 0000-0001-9726-3840

Şehmus Fidan Bu kişi benim 0000-0001-9726-3840

Hasan Oktay 0000-0002-0917-7844

Yayımlanma Tarihi 30 Haziran 2020
Gönderilme Tarihi 6 Kasım 2019
Kabul Tarihi 4 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 1

Kaynak Göster

APA Polat, S., Fidan, Ş., & Oktay, H. (2020). Hafif Yapı Malzemelerinin Isıl İletkenlik Özelliklerinin Yapay Sinir Ağları Kullanılarak Tahmin Edilmesi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 10(1), 28-41.