Araştırma Makalesi
BibTex RIS Kaynak Göster

Sulu Çözeltiden Alizarin Sarısı Boyarmaddesinin Nanoadsorbent (MNPs-G1-Mu) Vasıtasıyla Adsorpsiyon Özelliklerinin Belirlenmesi

Yıl 2021, Cilt: 11 Sayı: 1, 27 - 42, 30.06.2021

Öz

Bu çalışmada Alizarin Sarısı boyarmaddesinin sulu çözeltiden adsorpsiyon yöntemiyle uzaklaştırılması amaçlanmıştır. Adsorpsiyon işleminde adsorbent olarak bir nano materyal olan MNPs-G1-Mu kullanılmıştır. Temas süresi, pH, başlangıç boyarmadde konsantrasyonu ve adsorbent miktarının adsorpsiyona etkileri incelenmiş olup, bu adsorpsiyon işlemi için uygun koşullar belirlenmiştir. Daha sonra adsorpsiyon kinetiğinin araştırılması için kinetik veriler kinetik denklemlerde (Pseudo Birinci Derece Kinetik Denklemi ve Pseudo İkinci Derece Kinetik Denklemi) değerlendirilmiştir. Adsorpsiyonun her iki kinetik denkleme de uyduğu belirlenmiştir. Son olarak, MNPs-G1-Mu ile Alizarin Sarısı boyarmaddesinin adsorpsiyonuna ait izoterm çalışması yapılarak, deneysel verilerin Langmuir ve Freundlich adsorpsiyon izotermlerine uygunluk gösterdiği belirlenmiştir. Bu izotermlerden faydalanılarak Langmuir sabiti (qm) ve b ile Freundlich sabitleri k ve n hesaplanmıştır. Sonuç olarak, MNPs-G1-Mu adsorbentinin Alizarin Sarısı boyarmaddesini %90,43 verimle adsorpladığı belirlenmiştir.

Kaynakça

  • Alves de Lima, R.O., Bazo, A.P., Salvadori, D.M.F., Rech, C.M., Oliveira, D.P., & Umbuzeiro, G.A. (2007). Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 626, 53-60.
  • Anastopoulos, I. ve Kyzas, G.Z. (2014). Agricultural peels for dye adsorption: a review of recent literatüre, Journal of Molecular Liquids, 200, 381-389.
  • Arruebo, M., Pacheco, R., Ibarra, M.R., & Santamaría, J. (2007). Magnetic nanoparticles for drug delivery, Nano Today, 2(3), 22-32.
  • Boyer, C., Whittaker, M.R., Bulmus, V., Liu, J., & Davis, T.P. (2010). The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications, NPG Asia Materials, 2, 23-30.
  • Chen, S., Qin, T., Wang, T., Fangyuan, C., Xuli, L., Haobo, H., & Zhou, M. (2019). Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism, Journal of Molecular Liquids, 285, 62-74.
  • Dawood, S. ve Sen, T.K. (2012). Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design, Water Research, 46, 1933-1946.
  • Dias, A.M.G.C., Hussain, A., Marcos, A.S., & Roque, A.C.A. (2011). A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides, Biotechnology Advances, 29 (1), 142-155.
  • Ekinci, S., İlter, Z., Ercan, S., Çınar, E., & Çakmak, R. (2021). Magnetite nanoparticles grafted with murexide-terminated polyamidoamine dendrimers for removal of lead (II) from aqueous solution: synthesis, characterization, adsorption and antimicrobial activity studies, Heliyon, 7, e06600.
  • Ekinci, S. (2019). Poliamidoamin dendrimerleri ile modifiye edilmiş süperparamagnetik demir oksit nanopartiküllerin hazırlanması ve bazı ağır metallerin ve boyar maddelerin adsorpsiyonunda kullanılması. (Doktora tezi). Fırat Üniversitesi, Elazığ.
  • Ganapathe, L.S., Mohamed, M.A., Yunus, R.M., & Berhanuddin, D.D. (2020). Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation, Magnetochemistry, 6 (4), 68-103.
  • Gupta, V. (2009). Application of low-cost adsorbents for dye removal—a review, Journal of Environmental Management, 90, 2313-2342.
  • Hatch, K.L. ve Maibach, H.I. (1995). Textile dye dermatitis, Journal of the American Academy of Dermatology, 32(4), 631-639.
  • Hosseinzadeh, H. ve Ramin, S. (2018). Fabrication of starch-graft-poly(acrylamide)/graphene oxide/hydroxyapatite nanocomposite hydrogel adsorbent for removal of malachite green dye from aqueous solution, International Journal of Biological Macromolecules, 106, 101-115.
  • Jung, K..W., Choi, B.H., Hwang, M.J., Jeong, T.U., & Ahn, K.H. (2016). Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue, Bioresourch Technology, 219, 185-195.
  • Kant, R. (2012). Adsorption of dye eosin from an aqueous solution on two different samples of activated carbon by static batch method, Journal of Water Resource and Protection, 4, 93-98.
  • Khalil, M.M., El Sayed, A.H., Masoud, M.S., Mahmoud, E.M., A. & Hamad, M. (2021). Synthesis and optical properties of alizarin yellow GG-Cu(II)-PVA nanocomposite film as a selective filter for optical applications, Journal of Materials Research and Technology, 11, 33-39.
  • Laliansanga, Tiwari, D., Tiwari, A., Shukla, A., Shim, M.J., & Lee, S.M. (2020). Facile synthesis and characterization of Ag(NP)/TiO2 nanocomposite: Photocatalytic efficiency of catalyst for oxidative removal of Alizarin Yellow, Catalysis Today, In Press, Available online 15 September 2020.
  • Laliansanga, Tiwari, D., Tiwari, A., Shukla, A., Kim, D.J., Yoon, Y.Y., & Lee, S.M. (2020). Facile synthesis and characterization of nanocomposite Au0(NPs)/titanium dioxide: Photocatalytic degradation of Alizarin Yellow, Journal of Industrial and Engineering Chemistry, 82, 153-163.
  • Li, H., Yang, S., Hui, D., & Hong, R. (2020). Progress in magnetic Fe3O4 nanomaterials in magnetic resonance imaging, Nanotechnology Reviews, 9, 1265-1283.
  • Natarajan, S., Harini, K., Gajula, G.P., Sarmento, B., Neves-Petersen, M.T., & Thiagarajan, V. (2019). Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications, BMC Materials, 1, Article number: 2.
  • Palanisamy, S. ve Wang, Y.M. (2019). Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer, Dalton Transactions, 48, 9490-9515.
  • Rehman, A.U., Nazir, S., Irshad, R., Tahir, K., Rehman, K.U., Islam, R.U., & Wahab, Z. (2021). Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles, Journal of Molecular Liquids, 321, 114455.
  • Robinson, T. McMullan, G. Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical rewiev on current treatment technologies with a proposed alternative, Bioresource Technoloy, 77, 247-255.
  • Sekar, M., Sakthi, V., & Rengaraj, S. (2004). Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut Shell, Journal of Colloid and Interface Science, 279 (2), 307-313.
  • Slokar, Y. M. ve Marechal, A.M.L. (1998). Methods of decoloration of textile wastewaters, dyes and pigments, 37(4), 335-356.
  • Socha, K. (1991). Treatment of textile effluents, Textile Month, 12, 52-56.
  • Sun, C., Lee, J.S.H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery, Advanced Drug Delivery Reviews, 60(11), 1252–1265. Tadic, M., Kralj, S., Jagodic, M, Hanzel, D., & Makovec, D. (2014). Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment, Applied Surface Science, 322, 255-264.
  • Tahir, N., Bhatti, H.N., Iqbal, M. & Noreen , S. (2017). Biopolymer composites with peanut hull waste biomass and application for crystal violet adsorption, International Journal of Biological Macromolecules,94, 210-220.
  • Yagub, M.T., Sen, T.K., Afroze, S., & Ang, H.M. (2014). Dye and its removal from aqueous solution by adsorption: A review, Advances in Colloid and Interface Science, 209, 172-184.
  • Zhang, H., Yaxing L., Bowen C., Changkun D., & Zhang Y. (2020). Synthesis of a starch-based sulfonic ion exchange resin and adsorption of dyestuffs to the resin, International Journal of Biological Macromolecules, 161, 561-572.
  • Zhao, S., Yu, X., Qian, Y., Chen, W., & Shen, J. (2020). Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics, Theranostics, 10(14), 6278-6309.
  • Zhou, Y., Zhang, L., & Cheng, Z. (2015). Removal of organic pollutants from aqueous solution using agricultural wastes: a review, Journal of Molecular Liquids, 212, 739-762.
  • Vallabani, N.V.S. ve Singh, S. (2018). Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics, 3 Biotechnology, 8, Article number: 279.
  • Wahajuddin ve Arora, S. (2012). Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers, International Journal of Nanomedicine,7, 3445-34.
  • Wu, Z.C., Wang, Z.Z., Liu, J., Yini J.H., & Kuang, S.P. (2015). A new porous magnetic chitosan modified by melamine for fast and efficient adsorption of Cu(II) ions, , International Journal of Biological Macromolecules, 81, 838-846.

Determination of The Adsorption Properties of Alizarin Yellow Dyestuff from Aqueous Solution by Nano Adsorbent

Yıl 2021, Cilt: 11 Sayı: 1, 27 - 42, 30.06.2021

Öz

In this study, it was aimed to remove the Alizarin Yellow dyestuff from the aqueous solution by adsorption method. MNPs-G1-Mu (iron oxide nanoparticles modified with Pamam dendrimer and murexide), a nano material, was used as an adsorbent in the adsorption process. The influences of equilibrium contact time, pH, initial dyestuff concentration and the amount of adsorbent on the adsorption were investigated, and suitable conditions were determined for this adsorption process. Then, the kinetical data were evaluated to kinetic equations (Pseudo First Order Kinetic Equation and Pseudo Second Order Kinetic Equation) to investigate the adsorption’s kinetical behaviour. It was determined that the adsorption process was fitted to both kinetic equations. After that, the isotherm study of the adsorption of Alizarin Yellow on MNPs-G1-Mu dyestuff was performed and it was concluded that the experimental data were suitable for both Langmuir and Freundlich adsorption isotherms. By using these isotherms’ linear equations, Langmuir constants qm and b were calculated as 15,384 mg g-1 and 0,105 respectively; Freundlich constants k and n were calculated as 3,589 and 3,115 respectively. As a result, it was determined that MNPs-G1-Mu adsorbed the Alizarin Yellow dyesuff with % 90,43 efficiency.

Kaynakça

  • Alves de Lima, R.O., Bazo, A.P., Salvadori, D.M.F., Rech, C.M., Oliveira, D.P., & Umbuzeiro, G.A. (2007). Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 626, 53-60.
  • Anastopoulos, I. ve Kyzas, G.Z. (2014). Agricultural peels for dye adsorption: a review of recent literatüre, Journal of Molecular Liquids, 200, 381-389.
  • Arruebo, M., Pacheco, R., Ibarra, M.R., & Santamaría, J. (2007). Magnetic nanoparticles for drug delivery, Nano Today, 2(3), 22-32.
  • Boyer, C., Whittaker, M.R., Bulmus, V., Liu, J., & Davis, T.P. (2010). The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications, NPG Asia Materials, 2, 23-30.
  • Chen, S., Qin, T., Wang, T., Fangyuan, C., Xuli, L., Haobo, H., & Zhou, M. (2019). Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism, Journal of Molecular Liquids, 285, 62-74.
  • Dawood, S. ve Sen, T.K. (2012). Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design, Water Research, 46, 1933-1946.
  • Dias, A.M.G.C., Hussain, A., Marcos, A.S., & Roque, A.C.A. (2011). A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides, Biotechnology Advances, 29 (1), 142-155.
  • Ekinci, S., İlter, Z., Ercan, S., Çınar, E., & Çakmak, R. (2021). Magnetite nanoparticles grafted with murexide-terminated polyamidoamine dendrimers for removal of lead (II) from aqueous solution: synthesis, characterization, adsorption and antimicrobial activity studies, Heliyon, 7, e06600.
  • Ekinci, S. (2019). Poliamidoamin dendrimerleri ile modifiye edilmiş süperparamagnetik demir oksit nanopartiküllerin hazırlanması ve bazı ağır metallerin ve boyar maddelerin adsorpsiyonunda kullanılması. (Doktora tezi). Fırat Üniversitesi, Elazığ.
  • Ganapathe, L.S., Mohamed, M.A., Yunus, R.M., & Berhanuddin, D.D. (2020). Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation, Magnetochemistry, 6 (4), 68-103.
  • Gupta, V. (2009). Application of low-cost adsorbents for dye removal—a review, Journal of Environmental Management, 90, 2313-2342.
  • Hatch, K.L. ve Maibach, H.I. (1995). Textile dye dermatitis, Journal of the American Academy of Dermatology, 32(4), 631-639.
  • Hosseinzadeh, H. ve Ramin, S. (2018). Fabrication of starch-graft-poly(acrylamide)/graphene oxide/hydroxyapatite nanocomposite hydrogel adsorbent for removal of malachite green dye from aqueous solution, International Journal of Biological Macromolecules, 106, 101-115.
  • Jung, K..W., Choi, B.H., Hwang, M.J., Jeong, T.U., & Ahn, K.H. (2016). Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue, Bioresourch Technology, 219, 185-195.
  • Kant, R. (2012). Adsorption of dye eosin from an aqueous solution on two different samples of activated carbon by static batch method, Journal of Water Resource and Protection, 4, 93-98.
  • Khalil, M.M., El Sayed, A.H., Masoud, M.S., Mahmoud, E.M., A. & Hamad, M. (2021). Synthesis and optical properties of alizarin yellow GG-Cu(II)-PVA nanocomposite film as a selective filter for optical applications, Journal of Materials Research and Technology, 11, 33-39.
  • Laliansanga, Tiwari, D., Tiwari, A., Shukla, A., Shim, M.J., & Lee, S.M. (2020). Facile synthesis and characterization of Ag(NP)/TiO2 nanocomposite: Photocatalytic efficiency of catalyst for oxidative removal of Alizarin Yellow, Catalysis Today, In Press, Available online 15 September 2020.
  • Laliansanga, Tiwari, D., Tiwari, A., Shukla, A., Kim, D.J., Yoon, Y.Y., & Lee, S.M. (2020). Facile synthesis and characterization of nanocomposite Au0(NPs)/titanium dioxide: Photocatalytic degradation of Alizarin Yellow, Journal of Industrial and Engineering Chemistry, 82, 153-163.
  • Li, H., Yang, S., Hui, D., & Hong, R. (2020). Progress in magnetic Fe3O4 nanomaterials in magnetic resonance imaging, Nanotechnology Reviews, 9, 1265-1283.
  • Natarajan, S., Harini, K., Gajula, G.P., Sarmento, B., Neves-Petersen, M.T., & Thiagarajan, V. (2019). Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications, BMC Materials, 1, Article number: 2.
  • Palanisamy, S. ve Wang, Y.M. (2019). Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer, Dalton Transactions, 48, 9490-9515.
  • Rehman, A.U., Nazir, S., Irshad, R., Tahir, K., Rehman, K.U., Islam, R.U., & Wahab, Z. (2021). Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles, Journal of Molecular Liquids, 321, 114455.
  • Robinson, T. McMullan, G. Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical rewiev on current treatment technologies with a proposed alternative, Bioresource Technoloy, 77, 247-255.
  • Sekar, M., Sakthi, V., & Rengaraj, S. (2004). Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut Shell, Journal of Colloid and Interface Science, 279 (2), 307-313.
  • Slokar, Y. M. ve Marechal, A.M.L. (1998). Methods of decoloration of textile wastewaters, dyes and pigments, 37(4), 335-356.
  • Socha, K. (1991). Treatment of textile effluents, Textile Month, 12, 52-56.
  • Sun, C., Lee, J.S.H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery, Advanced Drug Delivery Reviews, 60(11), 1252–1265. Tadic, M., Kralj, S., Jagodic, M, Hanzel, D., & Makovec, D. (2014). Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment, Applied Surface Science, 322, 255-264.
  • Tahir, N., Bhatti, H.N., Iqbal, M. & Noreen , S. (2017). Biopolymer composites with peanut hull waste biomass and application for crystal violet adsorption, International Journal of Biological Macromolecules,94, 210-220.
  • Yagub, M.T., Sen, T.K., Afroze, S., & Ang, H.M. (2014). Dye and its removal from aqueous solution by adsorption: A review, Advances in Colloid and Interface Science, 209, 172-184.
  • Zhang, H., Yaxing L., Bowen C., Changkun D., & Zhang Y. (2020). Synthesis of a starch-based sulfonic ion exchange resin and adsorption of dyestuffs to the resin, International Journal of Biological Macromolecules, 161, 561-572.
  • Zhao, S., Yu, X., Qian, Y., Chen, W., & Shen, J. (2020). Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics, Theranostics, 10(14), 6278-6309.
  • Zhou, Y., Zhang, L., & Cheng, Z. (2015). Removal of organic pollutants from aqueous solution using agricultural wastes: a review, Journal of Molecular Liquids, 212, 739-762.
  • Vallabani, N.V.S. ve Singh, S. (2018). Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics, 3 Biotechnology, 8, Article number: 279.
  • Wahajuddin ve Arora, S. (2012). Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers, International Journal of Nanomedicine,7, 3445-34.
  • Wu, Z.C., Wang, Z.Z., Liu, J., Yini J.H., & Kuang, S.P. (2015). A new porous magnetic chitosan modified by melamine for fast and efficient adsorption of Cu(II) ions, , International Journal of Biological Macromolecules, 81, 838-846.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makale
Yazarlar

Selma Ekinci 0000-0002-7835-4832

Zülfiye İlter 0000-0002-2135-0347

Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 13 Nisan 2021
Kabul Tarihi 5 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 1

Kaynak Göster

APA Ekinci, S., & İlter, Z. (2021). Sulu Çözeltiden Alizarin Sarısı Boyarmaddesinin Nanoadsorbent (MNPs-G1-Mu) Vasıtasıyla Adsorpsiyon Özelliklerinin Belirlenmesi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 11(1), 27-42.