Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 3 Sayı: 1, 1 - 8, 25.03.2020
https://doi.org/10.33434/cams.594690

Öz

Kaynakça

  • [1] A.T. Ali, Special Smarandache Curves in the Euclidian Space, International J.Math. Combin., 2, (2010), 30-36.
  • [2] A. Çalışkan, S. Şenyurt, Smarandache Curves In Terms of Sabban Frame of Spherical Indicatrix Curves, Gen. Math. Notes, 31(2), (2015), 1-15.
  • [3] A. Sabuncuoğlu, Differential Geometry, Nobel Publications, 2006.
  • [4] J. Koenderink, Solid Shape, MIT Press, Cambridge, MA, 1990.
  • [5] K. Taşköprü, M. Tosun, Smarandache Curves on S2, Bol. Soc. Paran. Mat. 32(1), (2014), 51-59.
  • [6] M. Turgut, S. Yılmaz, Smarandache Curves in Minkowski space-time, International J.Math. Combin., 3, (2008), 51-55.
  • [7] S. Şenyurt, C. Cevahir, Y. Altun, On Spatial Quaternionic Involute Curve A New View, Adv. Appl. Clifford Algebras, 27(2), (2017), 1815-1824.
  • [8] S. Şenyurt, C. Cevahir, Y. Altun, H. Kocayi˘git, On the Sabban frame belonging to involute-evolute curves, Thermal Science, 23, (2019), 413-425.
  • [9] K. E. Özen, M. Tosun, M. Akyiğit, Siacci’s theorem according to Darboux frame, Analele Universitatii Ovidius Constanta-Seria Matematica, 25(3), (2017), 155–165. DOI:10.1515/auom-2017-0042.
  • [10] K. E. Özen, F. S. Dündar, M. Tosun, An alternative approach to jerk in motion along a space curve with applications, Journal of Theoretical and Applied Mechanics, 57(2), (2019), 435–444. DOI:10.15632/jtam-pl/104595.
  • [11] K. E. Özen, M. Güner, M. Tosun, A note on the acceleration and jerk in motion along a space curve, Analele Universitatii Ovidius Constanta-Seria Matematica, 28(1), (2020), 151-164. DOI:10.2478/auom-2020-0011.
  • [12] W. Fenchel, On The Differential Geometry of Closed Space Curves, Bulletin of the American Mathematical Society, 57, (1951), 44-54.

Smarandache Curves of the Evolute Curve According to Sabban Frame

Yıl 2020, Cilt: 3 Sayı: 1, 1 - 8, 25.03.2020
https://doi.org/10.33434/cams.594690

Öz

The aim of this paper is to define Smarandache curves according to the Sabban frame belonging to the unit Darboux vector of spherical indicatrix curve of the evolute curve. Also, we calculate the geodesic curvatures of these curves. Finally, the results are expressed depending on the involute curve.

Kaynakça

  • [1] A.T. Ali, Special Smarandache Curves in the Euclidian Space, International J.Math. Combin., 2, (2010), 30-36.
  • [2] A. Çalışkan, S. Şenyurt, Smarandache Curves In Terms of Sabban Frame of Spherical Indicatrix Curves, Gen. Math. Notes, 31(2), (2015), 1-15.
  • [3] A. Sabuncuoğlu, Differential Geometry, Nobel Publications, 2006.
  • [4] J. Koenderink, Solid Shape, MIT Press, Cambridge, MA, 1990.
  • [5] K. Taşköprü, M. Tosun, Smarandache Curves on S2, Bol. Soc. Paran. Mat. 32(1), (2014), 51-59.
  • [6] M. Turgut, S. Yılmaz, Smarandache Curves in Minkowski space-time, International J.Math. Combin., 3, (2008), 51-55.
  • [7] S. Şenyurt, C. Cevahir, Y. Altun, On Spatial Quaternionic Involute Curve A New View, Adv. Appl. Clifford Algebras, 27(2), (2017), 1815-1824.
  • [8] S. Şenyurt, C. Cevahir, Y. Altun, H. Kocayi˘git, On the Sabban frame belonging to involute-evolute curves, Thermal Science, 23, (2019), 413-425.
  • [9] K. E. Özen, M. Tosun, M. Akyiğit, Siacci’s theorem according to Darboux frame, Analele Universitatii Ovidius Constanta-Seria Matematica, 25(3), (2017), 155–165. DOI:10.1515/auom-2017-0042.
  • [10] K. E. Özen, F. S. Dündar, M. Tosun, An alternative approach to jerk in motion along a space curve with applications, Journal of Theoretical and Applied Mechanics, 57(2), (2019), 435–444. DOI:10.15632/jtam-pl/104595.
  • [11] K. E. Özen, M. Güner, M. Tosun, A note on the acceleration and jerk in motion along a space curve, Analele Universitatii Ovidius Constanta-Seria Matematica, 28(1), (2020), 151-164. DOI:10.2478/auom-2020-0011.
  • [12] W. Fenchel, On The Differential Geometry of Closed Space Curves, Bulletin of the American Mathematical Society, 57, (1951), 44-54.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Süleyman Şenyurt 0000-0003-1097-5541

Yasin Altun Bu kişi benim 0000-0002-6977-4958

Yayımlanma Tarihi 25 Mart 2020
Gönderilme Tarihi 21 Temmuz 2019
Kabul Tarihi 23 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 1

Kaynak Göster

APA Şenyurt, S., & Altun, Y. (2020). Smarandache Curves of the Evolute Curve According to Sabban Frame. Communications in Advanced Mathematical Sciences, 3(1), 1-8. https://doi.org/10.33434/cams.594690
AMA Şenyurt S, Altun Y. Smarandache Curves of the Evolute Curve According to Sabban Frame. Communications in Advanced Mathematical Sciences. Mart 2020;3(1):1-8. doi:10.33434/cams.594690
Chicago Şenyurt, Süleyman, ve Yasin Altun. “Smarandache Curves of the Evolute Curve According to Sabban Frame”. Communications in Advanced Mathematical Sciences 3, sy. 1 (Mart 2020): 1-8. https://doi.org/10.33434/cams.594690.
EndNote Şenyurt S, Altun Y (01 Mart 2020) Smarandache Curves of the Evolute Curve According to Sabban Frame. Communications in Advanced Mathematical Sciences 3 1 1–8.
IEEE S. Şenyurt ve Y. Altun, “Smarandache Curves of the Evolute Curve According to Sabban Frame”, Communications in Advanced Mathematical Sciences, c. 3, sy. 1, ss. 1–8, 2020, doi: 10.33434/cams.594690.
ISNAD Şenyurt, Süleyman - Altun, Yasin. “Smarandache Curves of the Evolute Curve According to Sabban Frame”. Communications in Advanced Mathematical Sciences 3/1 (Mart 2020), 1-8. https://doi.org/10.33434/cams.594690.
JAMA Şenyurt S, Altun Y. Smarandache Curves of the Evolute Curve According to Sabban Frame. Communications in Advanced Mathematical Sciences. 2020;3:1–8.
MLA Şenyurt, Süleyman ve Yasin Altun. “Smarandache Curves of the Evolute Curve According to Sabban Frame”. Communications in Advanced Mathematical Sciences, c. 3, sy. 1, 2020, ss. 1-8, doi:10.33434/cams.594690.
Vancouver Şenyurt S, Altun Y. Smarandache Curves of the Evolute Curve According to Sabban Frame. Communications in Advanced Mathematical Sciences. 2020;3(1):1-8.

28631   CAMS'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.