Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 3 Sayı: 1, 57 - 66, 25.03.2020

Öz

Kaynakça

  • [1] S. Lie, Geometrie der Beruhrungstransformationen. B.G. Teubner, Leipzig, (1896).
  • [2] H. Geiges, An Introduction to Contact Topology. Cambridge University Press, New York (2008).
  • [3] H. Geiges, A brief history of contact geometry and topology. Expo. Math. 19(1), 25-53 (2001).
  • [4] H. Geiges, Christiaan Huygens and contact geometry. Nieuw Arch. Wiskd (5). 6(2), 117-123. (2005).
  • [5] A. Bejancu, CR-submanifolds of a Kaehler manifold-I, Proc. Amer. Math. Soc., 69(1978), 135-42.
  • [6] M. H. Shahid, A. Sharfuddin and S.I. Husain, CR-submanifolds of a Sasakian manifold, Review Research Fac. Sc., Yogoslavia, 15(1985), 203-178.
  • [7] M. Kobayashi, CR-submanifolds of a Sasakian manifold, Tensor N. S., 35(1981), 297-307.
  • [8] K. Matsumoto, On contact CR-submanifolds of Sasakian manifolds, Inter J. Math. § Math. Sci, 16(1983), 313-326.
  • [9] G. D. Ludden, Submanifolds of cosymplectic manifold, J. Diff. Geometry, 4(1970), 237-244.
  • [10] A. Cabras, A. Ianus and Gh. Pitis, Extrinsic spheres and parallel submanifolds in cosymplectic manifolds Math, J. Toyama Univ. 17(1994), 31-53.
  • [11] A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds a Sasakian manifold, An. Sti. Univ. ’Al. I. Cuza’ Iasi Sect. Ia Mat. 27(1981), 163-170.
  • [12] A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds a Sasakian space form, Colloq. Math. 48(1984), 77-88.
  • [13] N. Papaghiuc, Almost semi-invariant submanifolds in Sasakian Space forms, An. s¸t. Univ. Ias¸ı. 29(1983), 5-10.
  • [14] N. Papaghiuc, Some theorems on semi-invariant submanifolds of a Sasakian manifold, An. Sti. Univ. ’Al. I. Cuza’ Ias¸ı Sect. I a Mat. 32(1986), 73-76.
  • [15] C.L. Bejan,Almost semi-invariant submanifolds of a cosymplectic manifold, An. S¸ ti. Univ. ’Al. I. Cuza’ Iası Sect. I a Mat. 31(1985), 149-156.
  • [16] A. Cabras and P. Matzeu, Almost semi-invariant submanifolds of a cosymplectic manifold, Demonstratio Math. 19(1986), no.2, 395-401.
  • [17] B. B. Sinha and R.N. Yadav, Semi-invariant submanifolds of a Kenmotsu manifold, Bull. cal. Math. Soc. 86, 405-412, (1994).
  • [18] H. Öztürk, C. Murathan, N. Aktan, A.T. Vanli, Almost a-cosymplectic f -manifolds, Analele stııntıfıce ale unıversıtatıı ”AI.I Cuza” Dı ıas¸ı (S.N.) Matematica, Tomul LX, f.1. (2014).
  • [19] K. Yano, M. Kon, Structures on Manifolds, World Scientific, Singapore. (1984).
  • [20] K. I. Erken, P. Dacko and C. Murathan, Almost a-Paracosymplectic Manifolds, arXiv: 1402.6930v1.
  • [21] D.E. Blair, Geometry of Manifolds with structural group U(n)O(s), J.Differential Geometry, 4(1970), 155-167.
  • [22] A. Bejancu, Geometry of CR-Submanifolds, D.Reidel Publ. Co., Holland, 169p. (1986).

Semi-Invariant Submanifolds of Almost $\alpha$-Cosymplectic $f$-Manifolds

Yıl 2020, Cilt: 3 Sayı: 1, 57 - 66, 25.03.2020

Öz

In this paper, we have and study several properties of semi-invariant submanifolds of an almost $\alpha$-cosymplectic $f$-manifold. We give an example and investigate the integrability conditions for the distributions involved in the definition of a semi-invariant submanifold of an almost $\alpha$-cosymplectic $f$-manifold.

Kaynakça

  • [1] S. Lie, Geometrie der Beruhrungstransformationen. B.G. Teubner, Leipzig, (1896).
  • [2] H. Geiges, An Introduction to Contact Topology. Cambridge University Press, New York (2008).
  • [3] H. Geiges, A brief history of contact geometry and topology. Expo. Math. 19(1), 25-53 (2001).
  • [4] H. Geiges, Christiaan Huygens and contact geometry. Nieuw Arch. Wiskd (5). 6(2), 117-123. (2005).
  • [5] A. Bejancu, CR-submanifolds of a Kaehler manifold-I, Proc. Amer. Math. Soc., 69(1978), 135-42.
  • [6] M. H. Shahid, A. Sharfuddin and S.I. Husain, CR-submanifolds of a Sasakian manifold, Review Research Fac. Sc., Yogoslavia, 15(1985), 203-178.
  • [7] M. Kobayashi, CR-submanifolds of a Sasakian manifold, Tensor N. S., 35(1981), 297-307.
  • [8] K. Matsumoto, On contact CR-submanifolds of Sasakian manifolds, Inter J. Math. § Math. Sci, 16(1983), 313-326.
  • [9] G. D. Ludden, Submanifolds of cosymplectic manifold, J. Diff. Geometry, 4(1970), 237-244.
  • [10] A. Cabras, A. Ianus and Gh. Pitis, Extrinsic spheres and parallel submanifolds in cosymplectic manifolds Math, J. Toyama Univ. 17(1994), 31-53.
  • [11] A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds a Sasakian manifold, An. Sti. Univ. ’Al. I. Cuza’ Iasi Sect. Ia Mat. 27(1981), 163-170.
  • [12] A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds a Sasakian space form, Colloq. Math. 48(1984), 77-88.
  • [13] N. Papaghiuc, Almost semi-invariant submanifolds in Sasakian Space forms, An. s¸t. Univ. Ias¸ı. 29(1983), 5-10.
  • [14] N. Papaghiuc, Some theorems on semi-invariant submanifolds of a Sasakian manifold, An. Sti. Univ. ’Al. I. Cuza’ Ias¸ı Sect. I a Mat. 32(1986), 73-76.
  • [15] C.L. Bejan,Almost semi-invariant submanifolds of a cosymplectic manifold, An. S¸ ti. Univ. ’Al. I. Cuza’ Iası Sect. I a Mat. 31(1985), 149-156.
  • [16] A. Cabras and P. Matzeu, Almost semi-invariant submanifolds of a cosymplectic manifold, Demonstratio Math. 19(1986), no.2, 395-401.
  • [17] B. B. Sinha and R.N. Yadav, Semi-invariant submanifolds of a Kenmotsu manifold, Bull. cal. Math. Soc. 86, 405-412, (1994).
  • [18] H. Öztürk, C. Murathan, N. Aktan, A.T. Vanli, Almost a-cosymplectic f -manifolds, Analele stııntıfıce ale unıversıtatıı ”AI.I Cuza” Dı ıas¸ı (S.N.) Matematica, Tomul LX, f.1. (2014).
  • [19] K. Yano, M. Kon, Structures on Manifolds, World Scientific, Singapore. (1984).
  • [20] K. I. Erken, P. Dacko and C. Murathan, Almost a-Paracosymplectic Manifolds, arXiv: 1402.6930v1.
  • [21] D.E. Blair, Geometry of Manifolds with structural group U(n)O(s), J.Differential Geometry, 4(1970), 155-167.
  • [22] A. Bejancu, Geometry of CR-Submanifolds, D.Reidel Publ. Co., Holland, 169p. (1986).
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Selahattin Beyendi 0000-0002-1037-6410

Nesip Aktan 0000-0002-6825-4563

Ali İhsan Sivridağ Bu kişi benim

Yayımlanma Tarihi 25 Mart 2020
Gönderilme Tarihi 17 Şubat 2020
Kabul Tarihi 20 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 1

Kaynak Göster

APA Beyendi, S., Aktan, N., & Sivridağ, A. İ. (2020). Semi-Invariant Submanifolds of Almost $\alpha$-Cosymplectic $f$-Manifolds. Communications in Advanced Mathematical Sciences, 3(1), 57-66.
AMA Beyendi S, Aktan N, Sivridağ Aİ. Semi-Invariant Submanifolds of Almost $\alpha$-Cosymplectic $f$-Manifolds. Communications in Advanced Mathematical Sciences. Mart 2020;3(1):57-66.
Chicago Beyendi, Selahattin, Nesip Aktan, ve Ali İhsan Sivridağ. “Semi-Invariant Submanifolds of Almost $\alpha$-Cosymplectic $f$-Manifolds”. Communications in Advanced Mathematical Sciences 3, sy. 1 (Mart 2020): 57-66.
EndNote Beyendi S, Aktan N, Sivridağ Aİ (01 Mart 2020) Semi-Invariant Submanifolds of Almost $\alpha$-Cosymplectic $f$-Manifolds. Communications in Advanced Mathematical Sciences 3 1 57–66.
IEEE S. Beyendi, N. Aktan, ve A. İ. Sivridağ, “Semi-Invariant Submanifolds of Almost $\alpha$-Cosymplectic $f$-Manifolds”, Communications in Advanced Mathematical Sciences, c. 3, sy. 1, ss. 57–66, 2020.
ISNAD Beyendi, Selahattin vd. “Semi-Invariant Submanifolds of Almost $\alpha$-Cosymplectic $f$-Manifolds”. Communications in Advanced Mathematical Sciences 3/1 (Mart 2020), 57-66.
JAMA Beyendi S, Aktan N, Sivridağ Aİ. Semi-Invariant Submanifolds of Almost $\alpha$-Cosymplectic $f$-Manifolds. Communications in Advanced Mathematical Sciences. 2020;3:57–66.
MLA Beyendi, Selahattin vd. “Semi-Invariant Submanifolds of Almost $\alpha$-Cosymplectic $f$-Manifolds”. Communications in Advanced Mathematical Sciences, c. 3, sy. 1, 2020, ss. 57-66.
Vancouver Beyendi S, Aktan N, Sivridağ Aİ. Semi-Invariant Submanifolds of Almost $\alpha$-Cosymplectic $f$-Manifolds. Communications in Advanced Mathematical Sciences. 2020;3(1):57-66.

28631   CAMS'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.