Research Article
BibTex RIS Cite

Some New Results in Partial Cone $b$-Metric Space

Year 2020, Volume: 3 Issue: 2, 67 - 73, 30.06.2020
https://doi.org/10.33434/cams.684102

Abstract

In this paper, we introduce the concepts of the Ulam-Hyers-Rassias stability and the limit shadowing property of a fixed point problem and the $P$-property of a mapping in partial cone $b$-metric space. Also, we give such results by using the mapping which is studied by Fernandez et al.[4] in partial cone $b$-metric space and provide some numerical examples to support our results. The results presented here extend and improve some recent results announced in the current literature.

Thanks

The authors would like to thank Prof. Metin Başarır for his valuable suggestions to improve the content of the manuscript.

References

  • [1] S. Czerwik, Contraction mapping in b-metric space, Acta Math. Inform. Univ. Ostrav, 1 (1993), 5-11.
  • [2] N. Hussain, M. H. Shah, KKM mapping in cone b-metric spaces, Computer Math. Appl., 62 (2011), 1677-1687.
  • [3] A. Sönmez, Fixed point theorems in partial cone metric spaces, (2011), arXiv:1101.2741v1 [math. GN].
  • [4] J. Fernandez, N. Malviya, B. Fisher, The asymptotically regularity and sequences in partial cone b-metric spaces with application, Filomat, 30(10) (2016), 2749-2760.
  • [5] S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, USA, 1964.
  • [6] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA., 27 (1941), 222-224.
  • [7] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan., 2 (1950), 64-66.
  • [8] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 237-300.
  • [9] I. A. Rus, Ulam stabilities of ordinary differential equation in a Banach space, Carpathian J. Math., 26(1) (2010), 103-107.
  • [10] L. Cadariu, L. Gavruta, P. Gavruta, Fixed points and generalized Hyers-Ulam stability, Abstr. Appl. Anal., 2012 (2012), Article ID 712743, 10 pages.
  • [11] L. P. Castro, R. C. Guerra, Hyers-Ulam-Rassias stability of Volterra integral equation within weighted spaces, Libertas Math. (new series), 33(2) (2013), 21-35.
  • [12] W. Sintunavarat, Generalized Ulam-Hyers stability, well-posedness and limit shadowing of the fixed point problems for $\alpha -\beta -$contraction mapping in metric space, Sci.World. J., 2014 (2014), Article ID 569174, 7 pages.
  • [13] A. Şahin, H. Arısoy, Z. Kalkan, On the stability of two functional equations arising in mathematical biology and theory of learning, Creat. Math. Inform., 28(1) (2019), 91-95.
  • [14] S. Y. Pilyugin, Sets of dynamical systems with various limit shadowing properties, J. Dynam. Differantial Equations, 19(3) (2007), 747-775.
  • [15] G. S. Jeong, B. E. Rhoades, Maps for which $F(T)=F(T^{n})$}, Fixed Point Theory Appl. 6 71-105, Nova Sci. Publ. New York, USA, 2007.
  • [16] G. S. Jeong, B. E. Rhoades, More maps for which $F(T)=F(T^{n})$}, Demonstratio Math., 40(3) (2007), 671-680.
  • [17] B. E. Rhoades, M. Abbas, Maps satisfying generalized contractive conditions of integral type for which $F(T)=F(T^{n})$}, Int. J. Pure Appl. Math. 45(2) (2008), 225-231.
  • [18] H. Huang, G. Deng, S. Radenovic, Fixed point theorems in $b$-metric spaces with applications to differential equation, J. Fixed Point Theory Appl., 20(52) (2018), 1-24.
Year 2020, Volume: 3 Issue: 2, 67 - 73, 30.06.2020
https://doi.org/10.33434/cams.684102

Abstract

References

  • [1] S. Czerwik, Contraction mapping in b-metric space, Acta Math. Inform. Univ. Ostrav, 1 (1993), 5-11.
  • [2] N. Hussain, M. H. Shah, KKM mapping in cone b-metric spaces, Computer Math. Appl., 62 (2011), 1677-1687.
  • [3] A. Sönmez, Fixed point theorems in partial cone metric spaces, (2011), arXiv:1101.2741v1 [math. GN].
  • [4] J. Fernandez, N. Malviya, B. Fisher, The asymptotically regularity and sequences in partial cone b-metric spaces with application, Filomat, 30(10) (2016), 2749-2760.
  • [5] S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, USA, 1964.
  • [6] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA., 27 (1941), 222-224.
  • [7] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan., 2 (1950), 64-66.
  • [8] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 237-300.
  • [9] I. A. Rus, Ulam stabilities of ordinary differential equation in a Banach space, Carpathian J. Math., 26(1) (2010), 103-107.
  • [10] L. Cadariu, L. Gavruta, P. Gavruta, Fixed points and generalized Hyers-Ulam stability, Abstr. Appl. Anal., 2012 (2012), Article ID 712743, 10 pages.
  • [11] L. P. Castro, R. C. Guerra, Hyers-Ulam-Rassias stability of Volterra integral equation within weighted spaces, Libertas Math. (new series), 33(2) (2013), 21-35.
  • [12] W. Sintunavarat, Generalized Ulam-Hyers stability, well-posedness and limit shadowing of the fixed point problems for $\alpha -\beta -$contraction mapping in metric space, Sci.World. J., 2014 (2014), Article ID 569174, 7 pages.
  • [13] A. Şahin, H. Arısoy, Z. Kalkan, On the stability of two functional equations arising in mathematical biology and theory of learning, Creat. Math. Inform., 28(1) (2019), 91-95.
  • [14] S. Y. Pilyugin, Sets of dynamical systems with various limit shadowing properties, J. Dynam. Differantial Equations, 19(3) (2007), 747-775.
  • [15] G. S. Jeong, B. E. Rhoades, Maps for which $F(T)=F(T^{n})$}, Fixed Point Theory Appl. 6 71-105, Nova Sci. Publ. New York, USA, 2007.
  • [16] G. S. Jeong, B. E. Rhoades, More maps for which $F(T)=F(T^{n})$}, Demonstratio Math., 40(3) (2007), 671-680.
  • [17] B. E. Rhoades, M. Abbas, Maps satisfying generalized contractive conditions of integral type for which $F(T)=F(T^{n})$}, Int. J. Pure Appl. Math. 45(2) (2008), 225-231.
  • [18] H. Huang, G. Deng, S. Radenovic, Fixed point theorems in $b$-metric spaces with applications to differential equation, J. Fixed Point Theory Appl., 20(52) (2018), 1-24.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Zeynep Kalkan 0000-0001-6760-9820

Aynur Şahin 0000-0001-6114-9966

Publication Date June 30, 2020
Submission Date February 4, 2020
Acceptance Date March 30, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Kalkan, Z., & Şahin, A. (2020). Some New Results in Partial Cone $b$-Metric Space. Communications in Advanced Mathematical Sciences, 3(2), 67-73. https://doi.org/10.33434/cams.684102
AMA Kalkan Z, Şahin A. Some New Results in Partial Cone $b$-Metric Space. Communications in Advanced Mathematical Sciences. June 2020;3(2):67-73. doi:10.33434/cams.684102
Chicago Kalkan, Zeynep, and Aynur Şahin. “Some New Results in Partial Cone $b$-Metric Space”. Communications in Advanced Mathematical Sciences 3, no. 2 (June 2020): 67-73. https://doi.org/10.33434/cams.684102.
EndNote Kalkan Z, Şahin A (June 1, 2020) Some New Results in Partial Cone $b$-Metric Space. Communications in Advanced Mathematical Sciences 3 2 67–73.
IEEE Z. Kalkan and A. Şahin, “Some New Results in Partial Cone $b$-Metric Space”, Communications in Advanced Mathematical Sciences, vol. 3, no. 2, pp. 67–73, 2020, doi: 10.33434/cams.684102.
ISNAD Kalkan, Zeynep - Şahin, Aynur. “Some New Results in Partial Cone $b$-Metric Space”. Communications in Advanced Mathematical Sciences 3/2 (June 2020), 67-73. https://doi.org/10.33434/cams.684102.
JAMA Kalkan Z, Şahin A. Some New Results in Partial Cone $b$-Metric Space. Communications in Advanced Mathematical Sciences. 2020;3:67–73.
MLA Kalkan, Zeynep and Aynur Şahin. “Some New Results in Partial Cone $b$-Metric Space”. Communications in Advanced Mathematical Sciences, vol. 3, no. 2, 2020, pp. 67-73, doi:10.33434/cams.684102.
Vancouver Kalkan Z, Şahin A. Some New Results in Partial Cone $b$-Metric Space. Communications in Advanced Mathematical Sciences. 2020;3(2):67-73.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..