Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 4 Sayı: 4, 208 - 216, 27.12.2021
https://doi.org/10.33434/cams.941324

Öz

Kaynakça

  • [1] G. Kirchhoff, Vorlesungen uber Mechanik, Teubner, Leipzig , (1883).
  • [2] T. Matsuyama, R. Ikehata, On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl. 204, 729–753 (1996).
  • [3] K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl. 216, 321–342 (1997).
  • [4] E. Pis¸kin, Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms, Open Math. 13, 408–420 (2015).
  • [5] J. Zhou, Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping, Appl. Math. Comput. 265, 807–818 (2015).
  • [6] R. Ikehata, A note on the global solvability of solutions to some nonlinear wave equations with dissipative terms, Differ. Integral Equ. 8, 607–616 (1995).
  • [7] S. A. Messaoudi, Blow-up of solutions for the Kirchhoff equation of q􀀀Laplacian type with nonlinear dissipation, Colloq. Math. 94, 103–109 (2002).
  • [8] K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, Math. Meth. Appl. Sci. 20, 151–177 (1997).
  • [9] C. O. Alves, F. J. S. A. Corr ˆ ea, T. F. Ma, Positive Solutions for a Quasilinear Elliptic Equation of Kirchhoff Type, Comput. Math. Appl. 49, 85–93 (2005).
  • [10] A. Yang, Z. Gong, Blow-up of solutions for some nonlinear wave equations of Kirchhoff type with arbitrary positive initial energy, Electron. J. Differ. Equ. 332, 1–8 (2016).
  • [11] M. Shahrouzi, F. Kargarfard, Blow-up of solutions for a Kirchhoff type equation with variable-exponent nonlinearities, J. App. Anal. 27(1), 97–105 (2021).
  • [12] S. N. Antontsev, J. Ferreira, E. Pis¸kin, S. M. S. Cordeiro, Existence and non-existence of solutions for Timoshenko-type equations with variable exponents, Nonlinear Anal. Real World Appl. 61, 103341, (2021).
  • [13] E. Pis¸kin, Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents, Int. J. Nonlinear Anal. Appl. 11(1), 37–45 (2020).
  • [14] M. Shahrouzi, Blow up of solutions for a r(x)􀀀Laplacian Lam´e equation with variable-exponent nonlinearities and arbitrary initial energy level, Int. J. Nonlinear Anal. Appl. 13(1), 441–450 (2022).
  • [15] M. Shahrouzi, General decay and blow up of solutions for a class of inverse problem with elasticity term and variableexponent nonlinearities, Math. Meth. Appl. Sci. 2021. DOI: https://doi.org/10.1002/mma.7891.
  • [16] G. Dai, R. Hao, Existence of solutionsfor a p(x)􀀀Kirchhoff-type equation, J. Math. Anal. Appl. 359, 275–284 (2009). [17] M. K. Hamdani, A. Harrabi, F. Mtiri, D. D. Repovˇe, Existence and multiplicity results for a new p(x)􀀀Kirchhoff problem, Nonlinear Analysis 190, 111598 (2020).
  • [18] G. Dai, R. Ma, Solutions for a p(x)􀀀Kirchhoff type equation with Neumann boundary data, Nonlinear Analysis: Real World Applications 12 , 2666–2680 (2011).
  • [19] A. Ghanmi, Nontrivial solutions for Kirchhoff-type problems involving the p(x)􀀀Laplace operator, Rocky Mount. J. Math. 48(4), 1145–1158 (2018).
  • [20] E. J. Hurtado, O. H. Miyagaki, R. D. S. Rodrigues, Existence and Asymptotic Behaviour for a Kirchhoff Type Equation With Variable Critical Growth Exponent, Milan J. Math. 85, 71–102 (2017).
  • [21] S. Heidarkhani, A. L. A. De Araujo, G. A. Afrouzi, S. Moradi, Multiple solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Math. Nachr. 291(2), 326–342 (2018).
  • [22] M. Shahrouzi, On behaviour of solutions for a nonlinear viscoelastic equation with variable-exponent nonlinearities, Comp. Math. Appl. 75, 3946–3956 (2018).
  • [23] M. Shahrouzi, Global nonexistence of solutions for a class of viscoelastic Lam´e system, Indian J. Pure Appl. Math. 51(4), 1383–1397 (2020).
  • [24] L. Diening, P. Hasto, et al. Lebesgue and Sobolev spaces with variable exponents, Springer-Verlag, (2011).
  • [25] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent, Stud. Math. 143, 267–293 (2000).
  • [26] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent II, Math. Nachr. 246, 53–67 (2002).
  • [27] X. Fan, D. Zhao, On the spaces Lp(x) andWm;p(x)(W), J. Math. Anal. Appl. 263, 424–446 (2001).
  • [28] X. Fan, Q. H. Zhang, Existence of solutions for p(x)􀀀Laplacian Dirichlet problem, Nonlinear Anal. 52, 1843–1852 (2003).

A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy

Yıl 2021, Cilt: 4 Sayı: 4, 208 - 216, 27.12.2021
https://doi.org/10.33434/cams.941324

Öz

In this paper we consider $r(x)-$Kirchhoff type equation with variable-exponent nonlinearity of the form $$ u_{tt}-\Delta u-\big(a+b\int_{\Omega}\frac{1}{r(x)}|\nabla u|^{r(x)}dx\big)\Delta_{r(x)}u+\beta u_{t}=|u|^{p(x)-2}u, $$ associated with initial and Dirichlet boundary conditions. Under appropriate conditions on $r(.)$ and $p(.)$, stability result along the solution energy is proved. It is also shown that regarding arbitrary positive initial energy and suitable range of variable exponents, solutions blow-up in a finite time.

Kaynakça

  • [1] G. Kirchhoff, Vorlesungen uber Mechanik, Teubner, Leipzig , (1883).
  • [2] T. Matsuyama, R. Ikehata, On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl. 204, 729–753 (1996).
  • [3] K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl. 216, 321–342 (1997).
  • [4] E. Pis¸kin, Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms, Open Math. 13, 408–420 (2015).
  • [5] J. Zhou, Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping, Appl. Math. Comput. 265, 807–818 (2015).
  • [6] R. Ikehata, A note on the global solvability of solutions to some nonlinear wave equations with dissipative terms, Differ. Integral Equ. 8, 607–616 (1995).
  • [7] S. A. Messaoudi, Blow-up of solutions for the Kirchhoff equation of q􀀀Laplacian type with nonlinear dissipation, Colloq. Math. 94, 103–109 (2002).
  • [8] K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, Math. Meth. Appl. Sci. 20, 151–177 (1997).
  • [9] C. O. Alves, F. J. S. A. Corr ˆ ea, T. F. Ma, Positive Solutions for a Quasilinear Elliptic Equation of Kirchhoff Type, Comput. Math. Appl. 49, 85–93 (2005).
  • [10] A. Yang, Z. Gong, Blow-up of solutions for some nonlinear wave equations of Kirchhoff type with arbitrary positive initial energy, Electron. J. Differ. Equ. 332, 1–8 (2016).
  • [11] M. Shahrouzi, F. Kargarfard, Blow-up of solutions for a Kirchhoff type equation with variable-exponent nonlinearities, J. App. Anal. 27(1), 97–105 (2021).
  • [12] S. N. Antontsev, J. Ferreira, E. Pis¸kin, S. M. S. Cordeiro, Existence and non-existence of solutions for Timoshenko-type equations with variable exponents, Nonlinear Anal. Real World Appl. 61, 103341, (2021).
  • [13] E. Pis¸kin, Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents, Int. J. Nonlinear Anal. Appl. 11(1), 37–45 (2020).
  • [14] M. Shahrouzi, Blow up of solutions for a r(x)􀀀Laplacian Lam´e equation with variable-exponent nonlinearities and arbitrary initial energy level, Int. J. Nonlinear Anal. Appl. 13(1), 441–450 (2022).
  • [15] M. Shahrouzi, General decay and blow up of solutions for a class of inverse problem with elasticity term and variableexponent nonlinearities, Math. Meth. Appl. Sci. 2021. DOI: https://doi.org/10.1002/mma.7891.
  • [16] G. Dai, R. Hao, Existence of solutionsfor a p(x)􀀀Kirchhoff-type equation, J. Math. Anal. Appl. 359, 275–284 (2009). [17] M. K. Hamdani, A. Harrabi, F. Mtiri, D. D. Repovˇe, Existence and multiplicity results for a new p(x)􀀀Kirchhoff problem, Nonlinear Analysis 190, 111598 (2020).
  • [18] G. Dai, R. Ma, Solutions for a p(x)􀀀Kirchhoff type equation with Neumann boundary data, Nonlinear Analysis: Real World Applications 12 , 2666–2680 (2011).
  • [19] A. Ghanmi, Nontrivial solutions for Kirchhoff-type problems involving the p(x)􀀀Laplace operator, Rocky Mount. J. Math. 48(4), 1145–1158 (2018).
  • [20] E. J. Hurtado, O. H. Miyagaki, R. D. S. Rodrigues, Existence and Asymptotic Behaviour for a Kirchhoff Type Equation With Variable Critical Growth Exponent, Milan J. Math. 85, 71–102 (2017).
  • [21] S. Heidarkhani, A. L. A. De Araujo, G. A. Afrouzi, S. Moradi, Multiple solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Math. Nachr. 291(2), 326–342 (2018).
  • [22] M. Shahrouzi, On behaviour of solutions for a nonlinear viscoelastic equation with variable-exponent nonlinearities, Comp. Math. Appl. 75, 3946–3956 (2018).
  • [23] M. Shahrouzi, Global nonexistence of solutions for a class of viscoelastic Lam´e system, Indian J. Pure Appl. Math. 51(4), 1383–1397 (2020).
  • [24] L. Diening, P. Hasto, et al. Lebesgue and Sobolev spaces with variable exponents, Springer-Verlag, (2011).
  • [25] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent, Stud. Math. 143, 267–293 (2000).
  • [26] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent II, Math. Nachr. 246, 53–67 (2002).
  • [27] X. Fan, D. Zhao, On the spaces Lp(x) andWm;p(x)(W), J. Math. Anal. Appl. 263, 424–446 (2001).
  • [28] X. Fan, Q. H. Zhang, Existence of solutions for p(x)􀀀Laplacian Dirichlet problem, Nonlinear Anal. 52, 1843–1852 (2003).
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Mohammad Shahrouzi

Jorge Ferreıra

Yayımlanma Tarihi 27 Aralık 2021
Gönderilme Tarihi 25 Mayıs 2021
Kabul Tarihi 13 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 4

Kaynak Göster

APA Shahrouzi, M., & Ferreıra, J. (2021). A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy. Communications in Advanced Mathematical Sciences, 4(4), 208-216. https://doi.org/10.33434/cams.941324
AMA Shahrouzi M, Ferreıra J. A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy. Communications in Advanced Mathematical Sciences. Aralık 2021;4(4):208-216. doi:10.33434/cams.941324
Chicago Shahrouzi, Mohammad, ve Jorge Ferreıra. “A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions With Positive Initial Energy”. Communications in Advanced Mathematical Sciences 4, sy. 4 (Aralık 2021): 208-16. https://doi.org/10.33434/cams.941324.
EndNote Shahrouzi M, Ferreıra J (01 Aralık 2021) A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy. Communications in Advanced Mathematical Sciences 4 4 208–216.
IEEE M. Shahrouzi ve J. Ferreıra, “A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy”, Communications in Advanced Mathematical Sciences, c. 4, sy. 4, ss. 208–216, 2021, doi: 10.33434/cams.941324.
ISNAD Shahrouzi, Mohammad - Ferreıra, Jorge. “A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions With Positive Initial Energy”. Communications in Advanced Mathematical Sciences 4/4 (Aralık 2021), 208-216. https://doi.org/10.33434/cams.941324.
JAMA Shahrouzi M, Ferreıra J. A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy. Communications in Advanced Mathematical Sciences. 2021;4:208–216.
MLA Shahrouzi, Mohammad ve Jorge Ferreıra. “A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions With Positive Initial Energy”. Communications in Advanced Mathematical Sciences, c. 4, sy. 4, 2021, ss. 208-16, doi:10.33434/cams.941324.
Vancouver Shahrouzi M, Ferreıra J. A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy. Communications in Advanced Mathematical Sciences. 2021;4(4):208-16.

28631   CAMS'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.