APA |
Vivek, D., Elsayed, E., & K., K. (2022). On Fuzzy Differential Equations with Finite Delay via $\psi$-type Riemann-Liouville Fractional Derivative. Communications in Advanced Mathematical Sciences, 5(1), 8-11. https://doi.org/10.33434/cams.962877 |
|
AMA |
Vivek D, Elsayed E, K. K. On Fuzzy Differential Equations with Finite Delay via $\psi$-type Riemann-Liouville Fractional Derivative. Communications in Advanced Mathematical Sciences. Mart 2022;5(1):8-11. doi:10.33434/cams.962877 |
|
Chicago |
Vivek, Dvivek, Elsayed Elsayed, ve Kangarajan K. “On Fuzzy Differential Equations With Finite Delay via $\psi$-Type Riemann-Liouville Fractional Derivative”. Communications in Advanced Mathematical Sciences 5, sy. 1 (Mart 2022): 8-11. https://doi.org/10.33434/cams.962877. |
|
EndNote |
Vivek D, Elsayed E, K. K (01 Mart 2022) On Fuzzy Differential Equations with Finite Delay via $\psi$-type Riemann-Liouville Fractional Derivative. Communications in Advanced Mathematical Sciences 5 1 8–11. |
|
IEEE |
D. Vivek, E. Elsayed, ve K. K., “On Fuzzy Differential Equations with Finite Delay via $\psi$-type Riemann-Liouville Fractional Derivative”, Communications in Advanced Mathematical Sciences, c. 5, sy. 1, ss. 8–11, 2022, doi: 10.33434/cams.962877. |
|
ISNAD |
Vivek, Dvivek vd. “On Fuzzy Differential Equations With Finite Delay via $\psi$-Type Riemann-Liouville Fractional Derivative”. Communications in Advanced Mathematical Sciences 5/1 (Mart 2022), 8-11. https://doi.org/10.33434/cams.962877. |
|
JAMA |
Vivek D, Elsayed E, K. K. On Fuzzy Differential Equations with Finite Delay via $\psi$-type Riemann-Liouville Fractional Derivative. Communications in Advanced Mathematical Sciences. 2022;5:8–11. |
|
MLA |
Vivek, Dvivek vd. “On Fuzzy Differential Equations With Finite Delay via $\psi$-Type Riemann-Liouville Fractional Derivative”. Communications in Advanced Mathematical Sciences, c. 5, sy. 1, 2022, ss. 8-11, doi:10.33434/cams.962877. |
|
Vancouver |
Vivek D, Elsayed E, K. K. On Fuzzy Differential Equations with Finite Delay via $\psi$-type Riemann-Liouville Fractional Derivative. Communications in Advanced Mathematical Sciences. 2022;5(1):8-11. |
|