Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 6 Sayı: 2, 86 - 97, 30.06.2023
https://doi.org/10.33434/cams.1254283

Öz

Kaynakça

  • [1] B. O’Neill, The fundamental equations of a submersion, Mich. Math. J., 33(13) (1966), 459-469.
  • [2] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715-738.
  • [3] B. Watson, Almost Hermitian submersions, Journal of differential geometry, 11(1) (1976), 147-165.
  • [4] D. Chinea, Almost contact metric submersions, Rendiconti del Circolo Matematico del Palermo, 34(1) (1985) , 89-104.
  • [5] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics. 203, Birkhauser Boston, Basel, Berlin. (2002).
  • [6] M. Falcitelli, A. M. Pastore, S. Ianus, Riemannian submersions and related topics, (2004).
  • [7] B. Sahin, Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications, Elsevier, Academic Press (2017).
  • [8] B. Sahin, Slant submersions from Almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roum., 54(1) (2011), 93-105.
  • [9] B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull., 56(1) (2013), 173-183.
  • [10] M. A. Akyol, R. Sari, E. Aksoy, Semi-invariant x? Riemannian submersions from Almost Contact metric manifolds, Int. J. Geom. Methods Mod. Phys. 14, (2017) no. 5, 1750075.
  • [11] G. Ayar, Pseudo-protective and quasi-conformal curvature tensors on Riemannian submersions, Math. Methods Appl. Sci., 44, (2021) no. 17, 13791-13798.
  • [12] P. Baird, J. C. Wood, Harmonic Morphism between Riemannian Manifolds, Oxford Science Publications, Oxford (2003).
  • [13] S. Ianus, A. M. Ionescu, R. Mocanu, G.E. Vilcu, Riemannian submersions from Almost contact metric manifolds, Abh. Math. Semin. Univ. Humbg., 81(1) (2011), 101-114.
  • [14] S. Ianus, R. Mazzocco, G. E. Vilcu, Riemannian submersion from quaternionic manifolds, Acta Appl. Math., 104(1) (2008), 83-89.
  • [15] S. Kumar, R. Prasad, K. Kumar, On quasi bi-slant x?-Riemannian submersions, Differ. Geom.-Dyn. Syst., 24 (2022) 119-38.
  • [16] S. Kumar, R. Prasad, S. K. Verma, Hemi-slant Riemannian submersions from cosymplectic manifolds, Tbil. Math. J., 15(4) (2022), 11-27.
  • [17] S. Kumar, S. Kumar, S. Pandey, R. Prasad, Conformal hemi-slant submersions from almost Hermitian manifolds, Commun. Korean Math. Soc., 35 (2020) no. 3, 999-1018.
  • [18] S. Kumar, S. Kumar, R. Prasad, A note on Csi-x?-Riemannian submersions from Kenmotsu manifolds, Bull. Transilv. Univ. Bras., 64(2) (2022), 151-166.
  • [19] C. Murathana, I. K. Erkena, Anti-Invariant Riemannian Submersions from Cosymplectic Manifolds onto Riemannian Manifolds, Filomat, 29(7) (2015), 1429-1444.
  • [20] R. Prasad, S. Kumar, Conformal anti-invariant submersions from nearly K¨ahler Manifolds, PJM., 8(2) (2019), 234-247.
  • [21] R. Prasad, P. K. Singh, S. Kumar, On quasi bi-slant submersions from Sasakian manifolds onto Riemannian manifolds, Afr. Mat., 32(3) (2021), 403-417.
  • [22] R. Prasad, M. A. Akyol, P. K. Singh, S. Kumar, On Quasi bi-slant submersions from Kenmotsu manifolds onto any Riemannian manifolds, J. Math. Ext., 16(6) (2022), (7)1-25.
  • [23] R. Prasad, P. K. Singh, S. Kumar, Conformal semi-slant submersions from Lorentzian para Kenmotsu manifolds, Tbil. Math. J., 14(1) (2021), 191-209.
  • [24] R. Prasad, M. A. Akyol, S. Kumar, P. K. Singh, Quasi bi-slant submersions in contact geometry, Cubo (Temuco)., 24(1) (2022), 1-20.
  • [25] K. S. Park, R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc, 50(3) (2013), 951-962.
  • [26] B. Sahin, Riemannian submersion from almost Hermitian manifolds, Taiwanese J. Math., 17(2) (2013), 629-659.
  • [27] B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Open Math., 8(3) (2010), 437-447.
  • [28] M. A. Magid, Submersions from anti-de Sitter space with totally geodesic fibers, J. Differ. Geom., 16(2) (1981), 323-331.
  • [29] M. Falcitelli, S. Ianus, A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific Publishing Company (2004).
  • [30] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12(2) (1989), 151-156.
  • [31] I. Mihai, R. Rosca, On Lorentzian P-Sasakian Manifolds, Classical Analysis World Scientific, Singapore, (1992), 155-169.
  • [32] Y. Gunduzalp, Slant submersions from Lorentzian almost para- contact manifold, Gulf J. Math., 3(1) (2015), 18-28.
  • [33] Y. Gunduzalp, B. Sahin, Paracontact semi-Riemannian submersions, Turkish J. Math. 37(1) (2013), 114-128.
  • [34] S. Kumar, R. Prasad, P. K. Singh, Conformal semi-slant submersions from Lorentzian para Sasakian manifolds onto Riemannian manifolds, Commun. Korean Math. Soc. 34(2) (2019), 637-655.
  • [35] R. Prasad, S. S. Shukla, S. Kumar, On quasi bi-slant submersions, Mediterr. J. Math., 16(6) (2019), 1-18.
  • [36] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., 509, Springer-Verlag, New York, (1976).
  • [37] S. Longwap, F. Massamba, NE. Homti, On quasi-hemi-slant Riemannian submersion, J. Math. Comput. Sci., 34(1) (2019), 1-14.
  • [38] H. M. Tastan, B. Sahin, S. Yanan, Hemi-slant submersions, Mediterr. J. Math., 13(4) (2016), 2171-2184.

On Quasi Hemi-Slant Submersions

Yıl 2023, Cilt: 6 Sayı: 2, 86 - 97, 30.06.2023
https://doi.org/10.33434/cams.1254283

Öz

The paper deals with the notion of quasi hemi-slant submersions from Lorentzian para Sasakian manifolds onto Riemannian manifolds. These submersions are generalization of hemi-slant submersions and semi-slant submersions. In this paper, we also study the geometry of leaves of distributions which are involved in the definition of the submersion. Further, we obtain the conditions for such distributions to be integrable and totally geodesic. Moreover, we also give the characterization theorems for proper quasi hemi-slant submersions and provide some examples of it.

Kaynakça

  • [1] B. O’Neill, The fundamental equations of a submersion, Mich. Math. J., 33(13) (1966), 459-469.
  • [2] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715-738.
  • [3] B. Watson, Almost Hermitian submersions, Journal of differential geometry, 11(1) (1976), 147-165.
  • [4] D. Chinea, Almost contact metric submersions, Rendiconti del Circolo Matematico del Palermo, 34(1) (1985) , 89-104.
  • [5] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics. 203, Birkhauser Boston, Basel, Berlin. (2002).
  • [6] M. Falcitelli, A. M. Pastore, S. Ianus, Riemannian submersions and related topics, (2004).
  • [7] B. Sahin, Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications, Elsevier, Academic Press (2017).
  • [8] B. Sahin, Slant submersions from Almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roum., 54(1) (2011), 93-105.
  • [9] B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull., 56(1) (2013), 173-183.
  • [10] M. A. Akyol, R. Sari, E. Aksoy, Semi-invariant x? Riemannian submersions from Almost Contact metric manifolds, Int. J. Geom. Methods Mod. Phys. 14, (2017) no. 5, 1750075.
  • [11] G. Ayar, Pseudo-protective and quasi-conformal curvature tensors on Riemannian submersions, Math. Methods Appl. Sci., 44, (2021) no. 17, 13791-13798.
  • [12] P. Baird, J. C. Wood, Harmonic Morphism between Riemannian Manifolds, Oxford Science Publications, Oxford (2003).
  • [13] S. Ianus, A. M. Ionescu, R. Mocanu, G.E. Vilcu, Riemannian submersions from Almost contact metric manifolds, Abh. Math. Semin. Univ. Humbg., 81(1) (2011), 101-114.
  • [14] S. Ianus, R. Mazzocco, G. E. Vilcu, Riemannian submersion from quaternionic manifolds, Acta Appl. Math., 104(1) (2008), 83-89.
  • [15] S. Kumar, R. Prasad, K. Kumar, On quasi bi-slant x?-Riemannian submersions, Differ. Geom.-Dyn. Syst., 24 (2022) 119-38.
  • [16] S. Kumar, R. Prasad, S. K. Verma, Hemi-slant Riemannian submersions from cosymplectic manifolds, Tbil. Math. J., 15(4) (2022), 11-27.
  • [17] S. Kumar, S. Kumar, S. Pandey, R. Prasad, Conformal hemi-slant submersions from almost Hermitian manifolds, Commun. Korean Math. Soc., 35 (2020) no. 3, 999-1018.
  • [18] S. Kumar, S. Kumar, R. Prasad, A note on Csi-x?-Riemannian submersions from Kenmotsu manifolds, Bull. Transilv. Univ. Bras., 64(2) (2022), 151-166.
  • [19] C. Murathana, I. K. Erkena, Anti-Invariant Riemannian Submersions from Cosymplectic Manifolds onto Riemannian Manifolds, Filomat, 29(7) (2015), 1429-1444.
  • [20] R. Prasad, S. Kumar, Conformal anti-invariant submersions from nearly K¨ahler Manifolds, PJM., 8(2) (2019), 234-247.
  • [21] R. Prasad, P. K. Singh, S. Kumar, On quasi bi-slant submersions from Sasakian manifolds onto Riemannian manifolds, Afr. Mat., 32(3) (2021), 403-417.
  • [22] R. Prasad, M. A. Akyol, P. K. Singh, S. Kumar, On Quasi bi-slant submersions from Kenmotsu manifolds onto any Riemannian manifolds, J. Math. Ext., 16(6) (2022), (7)1-25.
  • [23] R. Prasad, P. K. Singh, S. Kumar, Conformal semi-slant submersions from Lorentzian para Kenmotsu manifolds, Tbil. Math. J., 14(1) (2021), 191-209.
  • [24] R. Prasad, M. A. Akyol, S. Kumar, P. K. Singh, Quasi bi-slant submersions in contact geometry, Cubo (Temuco)., 24(1) (2022), 1-20.
  • [25] K. S. Park, R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc, 50(3) (2013), 951-962.
  • [26] B. Sahin, Riemannian submersion from almost Hermitian manifolds, Taiwanese J. Math., 17(2) (2013), 629-659.
  • [27] B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Open Math., 8(3) (2010), 437-447.
  • [28] M. A. Magid, Submersions from anti-de Sitter space with totally geodesic fibers, J. Differ. Geom., 16(2) (1981), 323-331.
  • [29] M. Falcitelli, S. Ianus, A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific Publishing Company (2004).
  • [30] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12(2) (1989), 151-156.
  • [31] I. Mihai, R. Rosca, On Lorentzian P-Sasakian Manifolds, Classical Analysis World Scientific, Singapore, (1992), 155-169.
  • [32] Y. Gunduzalp, Slant submersions from Lorentzian almost para- contact manifold, Gulf J. Math., 3(1) (2015), 18-28.
  • [33] Y. Gunduzalp, B. Sahin, Paracontact semi-Riemannian submersions, Turkish J. Math. 37(1) (2013), 114-128.
  • [34] S. Kumar, R. Prasad, P. K. Singh, Conformal semi-slant submersions from Lorentzian para Sasakian manifolds onto Riemannian manifolds, Commun. Korean Math. Soc. 34(2) (2019), 637-655.
  • [35] R. Prasad, S. S. Shukla, S. Kumar, On quasi bi-slant submersions, Mediterr. J. Math., 16(6) (2019), 1-18.
  • [36] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., 509, Springer-Verlag, New York, (1976).
  • [37] S. Longwap, F. Massamba, NE. Homti, On quasi-hemi-slant Riemannian submersion, J. Math. Comput. Sci., 34(1) (2019), 1-14.
  • [38] H. M. Tastan, B. Sahin, S. Yanan, Hemi-slant submersions, Mediterr. J. Math., 13(4) (2016), 2171-2184.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Pramod Kumar Rawat 0000-0001-7291-5291

Sushil Kumar 0000-0003-2118-4374

Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 21 Şubat 2023
Kabul Tarihi 22 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 2

Kaynak Göster

APA Rawat, P. K., & Kumar, S. (2023). On Quasi Hemi-Slant Submersions. Communications in Advanced Mathematical Sciences, 6(2), 86-97. https://doi.org/10.33434/cams.1254283
AMA Rawat PK, Kumar S. On Quasi Hemi-Slant Submersions. Communications in Advanced Mathematical Sciences. Haziran 2023;6(2):86-97. doi:10.33434/cams.1254283
Chicago Rawat, Pramod Kumar, ve Sushil Kumar. “On Quasi Hemi-Slant Submersions”. Communications in Advanced Mathematical Sciences 6, sy. 2 (Haziran 2023): 86-97. https://doi.org/10.33434/cams.1254283.
EndNote Rawat PK, Kumar S (01 Haziran 2023) On Quasi Hemi-Slant Submersions. Communications in Advanced Mathematical Sciences 6 2 86–97.
IEEE P. K. Rawat ve S. Kumar, “On Quasi Hemi-Slant Submersions”, Communications in Advanced Mathematical Sciences, c. 6, sy. 2, ss. 86–97, 2023, doi: 10.33434/cams.1254283.
ISNAD Rawat, Pramod Kumar - Kumar, Sushil. “On Quasi Hemi-Slant Submersions”. Communications in Advanced Mathematical Sciences 6/2 (Haziran 2023), 86-97. https://doi.org/10.33434/cams.1254283.
JAMA Rawat PK, Kumar S. On Quasi Hemi-Slant Submersions. Communications in Advanced Mathematical Sciences. 2023;6:86–97.
MLA Rawat, Pramod Kumar ve Sushil Kumar. “On Quasi Hemi-Slant Submersions”. Communications in Advanced Mathematical Sciences, c. 6, sy. 2, 2023, ss. 86-97, doi:10.33434/cams.1254283.
Vancouver Rawat PK, Kumar S. On Quasi Hemi-Slant Submersions. Communications in Advanced Mathematical Sciences. 2023;6(2):86-97.

28631   CAMS'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.