Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 18 Sayı: 1, 9 - 23, 01.05.2021

Öz

Kaynakça

  • [1] M.A. Chaudhry, S.M. Zubair, On a class of incomplete gamma functions with application, Chapman & Hall / CRC, 2002.
  • [2] M.A. Chaudhry, A. Qadir, M. Rafique, S.M. Zubair, “Extension of Euler beta function,” Journal of Computational and Applied Mathematics, vol. 78, pp. 19-32, 1997.
  • [3] D.M. Lee, A.K. Rathie, R.K. Parmar, Y.S Kim , “Generalized extended beta function, hypergeometric and confluent hypergeometrc functions,” Honam Mathematical Journal, Vol. 33 no. 2, pp. 187 – 206, 2011.
  • [4] J. Choi, A.K. Pallie, R.K. Parmar, “Extension of extended beta, hypergeometric and confluent hypergeometric functions,” Honam Mathematical Journal., vol. 36, no. 2, pp. 357 – 385, 2014.
  • [5] E. Ozergin, M.A. Ozarslan, A. Altin, “Extension of gamma, beta and hypergeometric function,” Journal of Computational and Applied Mathematics, vol. 235, pp. 4601 – 4610, 2011.
  • [6] R.K. Parmar, “A new generalization of gamma, beta, hypergeometric and confluent hypergeometric functions,” Le Mathematiche, vol. LXVIII, no. II, pp. 33 – 54, 2013.
  • [7] P. Agarwal, J. Choi, S. Jain, “Extended hypergeometric functions of two and three variable,” Communication of the Korean Mathematical Society, vol. 30, no. 4, pp. 403 – 414, 2015.
  • [8] P.I. Pucheta, “An new extended beta function,” International Journal of Mathematics and Its Applications, vol. 5, no. 3-C, pp. 255 – 260, 2017.
  • [9] M. Chand, H. Hachimi, R. Rani, “New extension of beta function and its applications,” International Journal of Mathematical Sciences, Article ID: 6451592, 25 pages, 2018.
  • [10] K.S. Gehlot and K.S. Nisar, “Extension of two parameter gamma, beta functions and its properties,” Applications and Applied Mathematics: An International Journal, Special Issue 6, pp. 37 – 55, 2020.
  • [11] E.C. Emmanuel, “On analytical review of the gamma functions,” Asian Research Journal of Current Science, vol. 2 no. 1, pp. 28 – 33, Article noARJOCS.163, 2020.
  • [12] M. Ghayasuddin, M. Ali and R.B. Paris, “Certain new extension of beta and related functions,”, 2020. [13] M.A.H. Kulip, F.F. Mohsen and S.S. Barahmah, “Further extended gamma and beta functions in term of generalized Wright functions,” Electronic Journal of University of Aden for Basic and Applied Sciences, vol. 1, no. 2, pp. 78 – 83, 2020.
  • [14] A. Ata, I.O. Kiyma, “A study on certain properties of generalized special function defined by Fox – Wright function,” Applied Mathematics and Nonlinear Sciences, vol. 5, no. 1, pp. 147 – 162, 2020.
  • [15] F. He, A. Bakhet, M. Abdullah, M. Hidan, “On the extended hypergeometric functions and their applications for the derivatives of the extended Jacobi matrix polynomials,” Mathematical Problems in Engineering, Article ID: 4268361, 8 pages, 2020.
  • [16] R. Sahin, O. Yagci, “Fractional calculus of the extended hypergeometric function,” Applied Mathematics and Nonlinear Sciences, vol. 5 no. 1, pp. 369 – 384, 2020.
  • [17] K.S. Nisar, D.l. Suthar, A. Agarwal, S.D. Purohit, “Fractional calculus operators with Appell function kernels applied to Srivastava polynomials and extended Mittag – Leffler function,” Advance in Difference Equations, vol. 148, 14 pages, 2020.
  • [18] T. Kim, D.S. Kim, “Note on the degenerate gamma function,” Russian Journal of Mathematical Physics, vol. 27, no. 3, pp. 352 – 358, 2020.
  • [19] A. Tassaddiq, “An application of theory of distributions to the family of λ – generalized gamma function,” Mathematics, vol. 5, no. 6, pp. 5839 – 5858, 2020.
  • [20] N. Khan, T. Usman, M. Aman, “Extended beta, hypergeometric and confluent hypergeometric function,” Transactions of National Academy of Science of Azerbaijan. Series of Physical – Technical and Mathematical Sciences, Issue Mathematics, vol. 39, no. 1, pp. 83 – 97, 2019.
  • [21] M. Gayasuddin, N. Khan, M. Ali, “A study of the extended beta, Gauss and confluent hypergeometric functions,” International Journal of Applied Mathematics, vol. 33, no. 10, pp. 1 – 13, 2020.
  • [22] D. Baleanu, P. Agarwal, R.K. Parmar, M.M. Alqurashi, S. Salahshour, “Extension of the fractional derivative operator of the Riemann – Liouville,” Journal of Nonlinear Sciences and Applicatons, vol. 10, pp. 2914 – 2924, 2017.
  • [23] P. Agarwal, F. Qi, m. Chand, G. Singh, “Some fractional differential equations involving generalized hypergeometric functions,” Journal of Applied Analysis, vol. 25, no. 1, pp. 37 – 44, 2019.
  • [24] R.K. Parmar, T.K. Pogany, “On the Mathieu – type series for the unified Gauss hypergeometric functions,” Applicable Analysis and Discrete Mathematics, vol. 14, pp. 138 – 149, 2020.
  • [25] A. Koraby, M. Ahmed, M. Khaled, E. Ahmed, M. Magdy, “Generalization of beta functions in term of Mittag – Leffler function,” Frontiers in Scientific Research and Tehnology, vol. 1, pp. 81 – 88, 2020.
  • [26] K.Tilahun, H. Tadessee, D.L. Suthar, “The extended Bessel – Maitland function and integral operators associated with fractional calculus,” Journal of Mathematics, Article ID: 7582063, 8 pages, 2020.
  • [27] D.L. Suthar, D. Baleanu, S.D. Purohit, E. Ucar, “Certain k – fractional operators and images forms of k – struve function,” Mathematics, vol. 5, no. 3, pp. 1706 – 1719, 2020.
  • [28] D.L. Suthar, A.M. Khan, A. Alaria, S.D. Puhohit, J. Singh, “Extended Bessel – Maitland function and its properties pertaining of integral transforms and fractional calculus,” Mathematics, vol. 5, no. 2, pp. 1400 – 1414, 2020.
  • [29] S. Joshi, E. Mittal and R.M. Pandey, “On Euler types interval Involving Mittag – Leffler functions,” Boletim da Sociedate Paranaense de Matematica, vol. 38, no. 2, pp. 125 – 134, 2020.
  • [30] N.U. Khan and S.W. Khan, “A new extension of the Mittag – Leffler Function,” Plastine Journal Mathematics, vol. 9, no. 2, pp. 977 – 983, 2020.
  • [31] M. Saif, A.H. Khan and K.S. Nisar, “Integral transform of extended Mittag – Leffler in term of Fox – Wright function,” Palestine Journal of Mathematics, vol. 9, no. 1, pp. 456 – 463, 2020. [32] K.S. Ghelot, “Differential equation of p – k Mittag – Leffler function,” Palestine Journal of Mathematics, vol. 9, no. 2, pp. 940 – 944, 2020.
  • [33] P.I. Pucheta, “An extended p – k Mittag – Leffler function,” Palestine Journal of Mathematics, vol. 9, no. 2, pp. 785 – 791, 2020.
  • [34] U.M. Abubakar and S.R. Kabara, “A note on a new extended gamma and beta functions and their properties,” IOSR Journal of Mathematics, vol. 15, no. 5, pp. 1 – 6, 2019.
  • [35] U.M. Abubakar and S.R. Kabara, “Some results on the extension of the extended beta function,” IOSR Journal of Mathematics, vol. 15, no. 5, pp. 7 – 12, 2019.

A New Extension of Modified Gamma and Beta Functions

Yıl 2021, Cilt: 18 Sayı: 1, 9 - 23, 01.05.2021

Öz

In this research paper, a new extension of modified Gamma and Beta functions is presented and various functional, symmetric, first and second summation relations, Mellin transforms and integral representations are obtained. Furthermore, mean, variance and moment generating function for the beta distribution of the new extension of the modified beta function are also obtained.

Kaynakça

  • [1] M.A. Chaudhry, S.M. Zubair, On a class of incomplete gamma functions with application, Chapman & Hall / CRC, 2002.
  • [2] M.A. Chaudhry, A. Qadir, M. Rafique, S.M. Zubair, “Extension of Euler beta function,” Journal of Computational and Applied Mathematics, vol. 78, pp. 19-32, 1997.
  • [3] D.M. Lee, A.K. Rathie, R.K. Parmar, Y.S Kim , “Generalized extended beta function, hypergeometric and confluent hypergeometrc functions,” Honam Mathematical Journal, Vol. 33 no. 2, pp. 187 – 206, 2011.
  • [4] J. Choi, A.K. Pallie, R.K. Parmar, “Extension of extended beta, hypergeometric and confluent hypergeometric functions,” Honam Mathematical Journal., vol. 36, no. 2, pp. 357 – 385, 2014.
  • [5] E. Ozergin, M.A. Ozarslan, A. Altin, “Extension of gamma, beta and hypergeometric function,” Journal of Computational and Applied Mathematics, vol. 235, pp. 4601 – 4610, 2011.
  • [6] R.K. Parmar, “A new generalization of gamma, beta, hypergeometric and confluent hypergeometric functions,” Le Mathematiche, vol. LXVIII, no. II, pp. 33 – 54, 2013.
  • [7] P. Agarwal, J. Choi, S. Jain, “Extended hypergeometric functions of two and three variable,” Communication of the Korean Mathematical Society, vol. 30, no. 4, pp. 403 – 414, 2015.
  • [8] P.I. Pucheta, “An new extended beta function,” International Journal of Mathematics and Its Applications, vol. 5, no. 3-C, pp. 255 – 260, 2017.
  • [9] M. Chand, H. Hachimi, R. Rani, “New extension of beta function and its applications,” International Journal of Mathematical Sciences, Article ID: 6451592, 25 pages, 2018.
  • [10] K.S. Gehlot and K.S. Nisar, “Extension of two parameter gamma, beta functions and its properties,” Applications and Applied Mathematics: An International Journal, Special Issue 6, pp. 37 – 55, 2020.
  • [11] E.C. Emmanuel, “On analytical review of the gamma functions,” Asian Research Journal of Current Science, vol. 2 no. 1, pp. 28 – 33, Article noARJOCS.163, 2020.
  • [12] M. Ghayasuddin, M. Ali and R.B. Paris, “Certain new extension of beta and related functions,”, 2020. [13] M.A.H. Kulip, F.F. Mohsen and S.S. Barahmah, “Further extended gamma and beta functions in term of generalized Wright functions,” Electronic Journal of University of Aden for Basic and Applied Sciences, vol. 1, no. 2, pp. 78 – 83, 2020.
  • [14] A. Ata, I.O. Kiyma, “A study on certain properties of generalized special function defined by Fox – Wright function,” Applied Mathematics and Nonlinear Sciences, vol. 5, no. 1, pp. 147 – 162, 2020.
  • [15] F. He, A. Bakhet, M. Abdullah, M. Hidan, “On the extended hypergeometric functions and their applications for the derivatives of the extended Jacobi matrix polynomials,” Mathematical Problems in Engineering, Article ID: 4268361, 8 pages, 2020.
  • [16] R. Sahin, O. Yagci, “Fractional calculus of the extended hypergeometric function,” Applied Mathematics and Nonlinear Sciences, vol. 5 no. 1, pp. 369 – 384, 2020.
  • [17] K.S. Nisar, D.l. Suthar, A. Agarwal, S.D. Purohit, “Fractional calculus operators with Appell function kernels applied to Srivastava polynomials and extended Mittag – Leffler function,” Advance in Difference Equations, vol. 148, 14 pages, 2020.
  • [18] T. Kim, D.S. Kim, “Note on the degenerate gamma function,” Russian Journal of Mathematical Physics, vol. 27, no. 3, pp. 352 – 358, 2020.
  • [19] A. Tassaddiq, “An application of theory of distributions to the family of λ – generalized gamma function,” Mathematics, vol. 5, no. 6, pp. 5839 – 5858, 2020.
  • [20] N. Khan, T. Usman, M. Aman, “Extended beta, hypergeometric and confluent hypergeometric function,” Transactions of National Academy of Science of Azerbaijan. Series of Physical – Technical and Mathematical Sciences, Issue Mathematics, vol. 39, no. 1, pp. 83 – 97, 2019.
  • [21] M. Gayasuddin, N. Khan, M. Ali, “A study of the extended beta, Gauss and confluent hypergeometric functions,” International Journal of Applied Mathematics, vol. 33, no. 10, pp. 1 – 13, 2020.
  • [22] D. Baleanu, P. Agarwal, R.K. Parmar, M.M. Alqurashi, S. Salahshour, “Extension of the fractional derivative operator of the Riemann – Liouville,” Journal of Nonlinear Sciences and Applicatons, vol. 10, pp. 2914 – 2924, 2017.
  • [23] P. Agarwal, F. Qi, m. Chand, G. Singh, “Some fractional differential equations involving generalized hypergeometric functions,” Journal of Applied Analysis, vol. 25, no. 1, pp. 37 – 44, 2019.
  • [24] R.K. Parmar, T.K. Pogany, “On the Mathieu – type series for the unified Gauss hypergeometric functions,” Applicable Analysis and Discrete Mathematics, vol. 14, pp. 138 – 149, 2020.
  • [25] A. Koraby, M. Ahmed, M. Khaled, E. Ahmed, M. Magdy, “Generalization of beta functions in term of Mittag – Leffler function,” Frontiers in Scientific Research and Tehnology, vol. 1, pp. 81 – 88, 2020.
  • [26] K.Tilahun, H. Tadessee, D.L. Suthar, “The extended Bessel – Maitland function and integral operators associated with fractional calculus,” Journal of Mathematics, Article ID: 7582063, 8 pages, 2020.
  • [27] D.L. Suthar, D. Baleanu, S.D. Purohit, E. Ucar, “Certain k – fractional operators and images forms of k – struve function,” Mathematics, vol. 5, no. 3, pp. 1706 – 1719, 2020.
  • [28] D.L. Suthar, A.M. Khan, A. Alaria, S.D. Puhohit, J. Singh, “Extended Bessel – Maitland function and its properties pertaining of integral transforms and fractional calculus,” Mathematics, vol. 5, no. 2, pp. 1400 – 1414, 2020.
  • [29] S. Joshi, E. Mittal and R.M. Pandey, “On Euler types interval Involving Mittag – Leffler functions,” Boletim da Sociedate Paranaense de Matematica, vol. 38, no. 2, pp. 125 – 134, 2020.
  • [30] N.U. Khan and S.W. Khan, “A new extension of the Mittag – Leffler Function,” Plastine Journal Mathematics, vol. 9, no. 2, pp. 977 – 983, 2020.
  • [31] M. Saif, A.H. Khan and K.S. Nisar, “Integral transform of extended Mittag – Leffler in term of Fox – Wright function,” Palestine Journal of Mathematics, vol. 9, no. 1, pp. 456 – 463, 2020. [32] K.S. Ghelot, “Differential equation of p – k Mittag – Leffler function,” Palestine Journal of Mathematics, vol. 9, no. 2, pp. 940 – 944, 2020.
  • [33] P.I. Pucheta, “An extended p – k Mittag – Leffler function,” Palestine Journal of Mathematics, vol. 9, no. 2, pp. 785 – 791, 2020.
  • [34] U.M. Abubakar and S.R. Kabara, “A note on a new extended gamma and beta functions and their properties,” IOSR Journal of Mathematics, vol. 15, no. 5, pp. 1 – 6, 2019.
  • [35] U.M. Abubakar and S.R. Kabara, “Some results on the extension of the extended beta function,” IOSR Journal of Mathematics, vol. 15, no. 5, pp. 7 – 12, 2019.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Umar Muhammad Abubakar 0000-0003-3935-4829

Salım Rabı'u Kabara 0000-0002-7188-673X

Muhammad Auwal Lawan Bu kişi benim 0000-0001-9246-4475

Faısal Adam Idrıs Bu kişi benim 0000-0003-3703-4936

Yayımlanma Tarihi 1 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 18 Sayı: 1

Kaynak Göster

APA Abubakar, U. M., Kabara, S. R., Lawan, M. A., Idrıs, F. A. (2021). A New Extension of Modified Gamma and Beta Functions. Cankaya University Journal of Science and Engineering, 18(1), 9-23.
AMA Abubakar UM, Kabara SR, Lawan MA, Idrıs FA. A New Extension of Modified Gamma and Beta Functions. CUJSE. Mayıs 2021;18(1):9-23.
Chicago Abubakar, Umar Muhammad, Salım Rabı’u Kabara, Muhammad Auwal Lawan, ve Faısal Adam Idrıs. “A New Extension of Modified Gamma and Beta Functions”. Cankaya University Journal of Science and Engineering 18, sy. 1 (Mayıs 2021): 9-23.
EndNote Abubakar UM, Kabara SR, Lawan MA, Idrıs FA (01 Mayıs 2021) A New Extension of Modified Gamma and Beta Functions. Cankaya University Journal of Science and Engineering 18 1 9–23.
IEEE U. M. Abubakar, S. R. Kabara, M. A. Lawan, ve F. A. Idrıs, “A New Extension of Modified Gamma and Beta Functions”, CUJSE, c. 18, sy. 1, ss. 9–23, 2021.
ISNAD Abubakar, Umar Muhammad vd. “A New Extension of Modified Gamma and Beta Functions”. Cankaya University Journal of Science and Engineering 18/1 (Mayıs 2021), 9-23.
JAMA Abubakar UM, Kabara SR, Lawan MA, Idrıs FA. A New Extension of Modified Gamma and Beta Functions. CUJSE. 2021;18:9–23.
MLA Abubakar, Umar Muhammad vd. “A New Extension of Modified Gamma and Beta Functions”. Cankaya University Journal of Science and Engineering, c. 18, sy. 1, 2021, ss. 9-23.
Vancouver Abubakar UM, Kabara SR, Lawan MA, Idrıs FA. A New Extension of Modified Gamma and Beta Functions. CUJSE. 2021;18(1):9-23.