Investigation of Thickness Effect on Structural and Magnetic Properties of Ni Thin Films for Some Applications
Yıl 2024,
Cilt: 20 Sayı: 3, 19 - 24, 30.09.2024
Perihan Aksu
Öz
In this study, it was investigated the effect on the structural, and magnetic properties dependent on the thickness of the Nickel films grown on MgO (100) substrates by the molecular beam epitaxy at a high vacuum. The structural and magnetic properties were examined by using X-ray diffraction and ferromagnetic resonance techniques. The X-ray diffraction and X-ray reflectivity measurements showed that Ni films grew in (200) orientation with tiny surface roughness. Experimental ferromagnetic resonance data showed that all samples had in-plane easy axis from out-of-plane measurements and fourfold anisotropy from in-plane measurements. Additionally, conditions under which Ni/MgO (100) films grew epitaxially were also observed. In this study, where the minimum thickness required for some applications to exhibit both magnetic properties and form the crystal structure of Ni thin films is determined, the importance of film thickness in terms of applications is emphasized and the minimum thickness condition is determined in terms of some applications.
Etik Beyan
There are no ethical issues after the publication of this manuscript.
Destekleyen Kurum
This work has not been supported by any funding.
Teşekkür
Device fabrication and measurements were done using Nanomagnetism and Spintronic Laboratory (NASAM) Facilities at the Institute of Nanotechnology, Gebze Technical University (GTU).
Kaynakça
- [1]. L. Lhotská and T. Welzer. 2015. Assistive technologies in biomedical engineering education. World Congress on Medical Physics and Biomedical Engineering: 1656-1659 (Springer International Publishing Toronto, Canada).
- [2]. Y. Qiu, Z. Wu, J. Wang, C. Zhang, and H. Zhang, 2023. Introduction of materials genome technology and its applications in the field of biomedical materials. Materials; 16: 1906.
- [3]. A. J. Kronemeijer, B. Peeters, G. de Haas, R. Verbeek, T. Bel, R. van de Laar, L. A. Ugalde Lopez, L. C. Peters, and G. H. Gelinck, 2021. Active-matrix mesh electronics thin-film-transistor arrays for biometrics-under-display and biomedical applications. Journal of the Society for Information Display; 29: 390–404.
- [4]. T. Kalayci, 2024. Investigation of the Magnetic, Structural, and Electronic Properties of Pt/[Pt/Co]4/Pt Thin Film by Experimental and Theoretical Methods. Moscow Univ. Phys; 78: 839–845.
- [5]. A. Behera, P. Parida, A. Kumar,2020. Advanced Manufacturing and Processing Technology. 1st Edition, ImprintCRC Press; 22.
- [6]. J.-Y. Kim, A. Rehman, H. Ryu, I. Oh, G-D.Sim, 2024. Sputter deposited Ni-rich NiTi thin films: Mechanical behavior and composition sensitivity. Materials Science and Engineering: A; 912: 146960.
- [7]. Z.-X. Wang, F. Liang, G.-P. Zhang, B. Zhang, 2022. Enhancing high-temperature tensile properties of Ni/Ni-W laminated composites for MEMS devices. Journal of Materials Science & Technology; 138: 129-137.
- [8]. S.D. Bader, and S.S.P. Parkin, 2010. Spintronics. Annual Review of Condensed Matter Physics; 1: 71-88.
- [9]. I. Žutić, J. Fabian, and S. D. Sarma, 2004. Spintronics: Fundamentals and applications. Reviews of Modern Physics; 76: 323.
- [10]. J. Singh, S. K. Gupta, A. K. Singh, P. Kothari, R.K. Kotnala, J. Akhtar, 2012. Investigation of structural and magnetic properties of Ni, NiFe, and NiFe2O4 thin films. Journal of Magnetism and Magnetic Materials; 324: 999–1005.
- [11]. N. Teichert, A. Boehnke, A. Behler, B. Weise, A. Waske, and A. Hütten, 2015. Exchange bias effect in martensitic epitaxial Ni-Mn-Sn thin films applied to pin CoFeB/MgO/CoFeB magnetic tunnel junctions. Applied Physics Letters; 106: 19.
- [12]. K. Dev, A. Kadian, V. R. Reddy, Rohit Medwal, and S. Annapoorni, 2024. Magnetization Switching Dynamics of Electrodeposited Fe–Ni Thin Films. Journal of Superconductivity and Novel Magnetism; 37:1243–1255.
- [13]. A. Ghita, T.-G. Mocioi, A. M. Lomonosov, J. Kim, O. Kovalenko, P. Vavassori, and Vasily V. Temnov, 2023. Anatomy of ultrafast quantitative magnetoacoustics in freestanding nickel thin films. Phys. Rev. B; 107: 134419.
- [14]. P. Srivastava, F. Wilhelm, A. Ney, M. Farle, H. Wende, N. Haack, G. Ceballos, and K. Baberschke, 1998. Magnetic moments and Curie temperatures of Ni and Co thin films and coupled trilayers. Phys. Rev. B; 58: 5701.
- [15]. A. Banigo, T. Azeez, K. Ejeta, A. Lateef, and E. Ajuogu, 2020. Nanobiosensors: applications in biomedical technology. IOP Conference Series: Materials Science and Engineering; 805: 012028 (IOP Publishing).
- [16]. L. Vannozzi, V. Iacovacci, A. Menciassi, and L. Ricotti, 2018. Nanocomposite thin films for triggerable drug delivery. Expert opinion on drug delivery; 15: 509–522.
- [17]. S. Miyazaki, Y. Q. Fu, and W. M. Huang, 2009. Thin film shape memory alloys: fundamentals and device applications Cambridge University Press.
- [18]. M. C. RAO and M. S. SHEKHAWAT, 2013. A brief survey on basic properties of thin films for device application, International Journal of Modern Physics: Conference Series; 22: 576–582.
- [19]. A. P. Piedade, F. Romeu, R. Branco, and P. V. Morais, 2018. Thin films for medical and environmental applications, Methods for Film Synthesis and Coating Procedures, edited by L. Nánai, A. Samantara, L. Fábián, and S. Ratha (IntechOpen, Rijeka, Chap. 8).
- [20]. R. Said, W. Ahmed, J. Uhomoibhi, and M. Jackson, 2009. Engineering studies of thin films for biomedical applications: Structural and compositional analysis of NiAl and Ni-Al-N films, Proceedings of the International Conference on Engineering Education and Research, ICEE-iCEER.
- [21]. E. Yang, V. M. Sokalski, M. T. Moneck, D. M. Bromberg, and J.G. Zhu, 2013. Annealing effect and under/capping layer study on Co/Ni multilayer thin films for domain wall motion. Journal of Applied Physics; 113: 17C116.
- [22]. T. KALAYCI, 2023. Investigation of cap and buffer layer effect in Co/Ni thin films by ferromagnetic resonance technique. Karadeniz Fen Bilimleri Dergisi; 13: 724–733.
- [23]. P. Salunkhe, M. A. AV, and D. Kekuda, 2020. Investigation on tailoring physical properties of nickel oxide thin films grown by dc magnetron sputtering. Materials Research Express; 7: 016427.
- [24]. P. Aksu, 2024. Strong perpendicular magnetic anisotropy and interlayer coupling in CoRh/Rh/Fe multilayers tailored by Rh spacer layer thickness. Physica B: Condensed Matter; 676: 415662.
- [25]. M. Farle, 1998. Ferromagnetic resonance of ultrathin metallic layers. Reports on progress in physics; 61: 755.
- [26]. O. Udalov, A. Fraerman, and E. Demidov, 2019. Definition of the interlayer interaction type in magnetic multilayers analyzing the shape of the ferromagnetic resonance peaks. Journal of Applied Physics; 125: 103902.
- [27]. L. Figueiredo, F. Pelegrini, A. Biondo, M. Pessoa, V. Nascimento, and E. Baggio-Saitovitch, 2020. Uncovering magnetic properties of NiFe/WTi multilayers by FMR and SWR analyses. Journal of Magnetism and Magnetic Materials; 498: 166183.
- [28]. M. Yasaka et al., 2010. X-ray thin-film measurement techniques. The Rigaku Journal; 26: 1–9.
- [29]. J. Potocnik, M. Nenadovi, N. Bundaleskia, B. Joki, M. Mitri, M. Popovi, Z. Rakocev, 2016. The influence of thickness on magnetic properties of nanostructured nickel thin films obtained by GLAD technique. Materials Research Bulletin; 84: 455-46.
- [30]. C. Kittel, and P. McEuen, 2018. Introduction to solid state physics. John Wiley & Sons.
- [31]. C. Yan et al, 2023. Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy. Chinese Phys. B; 32: 017503.
- [32]. P. Gambardella, and Stefan Blügel, 2020. Magnetic Surfaces, Thin Films and Nanostructures. Springer Handbook of Surface Science; ISBN: 978-3-030-46904-7.
- [33]. Klaus Baberschke, 2001. Anisotropy in Magnetism. Band-Ferromagnetism; 580. ISBN: 978-3-540-42389-8.
- [34]. J. G. Monsalve, J. E. Abrão, E. Santos, A. Ricalde, A. Azevedo, and O. Arnache, 2022. Twofold and fourfold anisotropies in zinc ferrite thin films investigated by ferromagnetic resonance. PHYSICAL REVIEW B; 105: 014420.
- [35]. S.A. Haque, A. Matsuo, Y. Seino, Y. Yamamoto, S. Yamada, H. Hori, 2001. Effect of GaAs substrate on the magnetic properties of Ni film. Physica B; 305:121–126.
- [36]. D. Kaya, H. S. Aydınoglu, E. S. Tüzemen, A. Ekicibil, 2021. Investigation of optical, electronic, and magnetic properties of p-type NiO thin film on different substrates. Thin Solid Films; 732: 138800.
- [37]. Z. Mao, W. Zhao, Z. A. Al-Mualem, and C.T. Campbell, 2020. Energetics and Structure of Nickel Atoms and Nanoparticles on MgO (100). The Journal of Physical Chemistry C; 124: 14685−14695.
- [38]. L. Trupina, L.Nedelcu, M. G. Banciu, A. Crunteanu, L. Huitema, C. Constantinescu, and Alexandre Boulle, 2020. Texture and interface characterization of iridium thin films grown on MgO substrates with different orientations. J Mater Sci; 55:1753–1764.
- [39]. T Tanaka, T Nishiyama, K Shikada, M. Ohtake, F. Kirino, and M. Futamoto, 2010. Epitaxial growth of Ni thin films on MgO single-crystal substrates. Journal of the Magnetics Society of Japan; 34: 21-29.
- [40]. C. Deger, P. Aksu, and F. Yildiz, 2010. Effect of Interdot Distance on Magnetic Behavior of 2-D Ni Dot Arrays. IEEE Transactions on Magnetics; 52: 12.