Araştırma Makalesi
BibTex RIS Kaynak Göster

İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu

Yıl 2019, Cilt: 6 Sayı: 4, 313 - 321, 31.12.2019
https://doi.org/10.34087/cbusbed.616566

Öz

Amaç: Mezenkimal kök hücreler (MKH),
rejeneratif, immunosupresif, non-immunojenik, anjiyojenik, antiapoptotik ve
antiinflamatuvar özellikleri sayesinde hem preklinik araştırmalarda hem de
kilinikte önem taşımaktadır. MKH’lerin immunosupresif fonksiyonlarının keşfi,
otoimmün hastalıklarda patojenik immun yanıtı düşürmek için yeni terapötik araç
olarak araştırmalara konu olmuştur. Plasenta, göbek kordonu ve amniyon sıvısı;
kemik iliği ve yağ kökenli MKH’lere göre non-invazif eldesi ve pluripotensi
kapasitesiyle avantajlı kök hücre kaynakları arasındadır. Bu çalışmada immün
yanıtların incelenmesi için in vitro bir model kullanılarak insan amniyotik
sıvı kökenli MKH’lerin (iAS-MKH), fitohemaglütinin ile aktive edilmiş
T-hücreleri (PHA-T hücreleri) üzerindeki etkisini; hücre proliferasyonu,
apoptoz, sitokin düzeyleri ve regülatuar T hücre (Treg) farklılaşması açısından
analiz edilmesi amaçlandı.

Gereç ve yöntem: Periferik kandan immunoseleksiyon
yöntemi ile izole edilen T-hücreleri karakterize edilip PHA ile uyarıldıktan
sonra, iAS-MKH’ler ile insertler kullanılarak indirekt yolla 4 gün ko-kültür
(transwell) edildi. Kültür sonrasında PHA-T-hücreleri flow sitometri ve ELISA
ile hücre canlılığı ve proliferasyon, sitokin düzeyleri, Treg-farklılaşması ve
apoptotik açıdan analiz edildi.

Bulgular: iAS-MKH'lerin; in vitroda ko-kültür
edildikleri PHA-T hücrelerinin sitokin profilini değiştirerek, canlılık ve
proliferasyonu azaltarak ve apoptoz ve Treg farklılaşmasını indükleyerek
immunosupresif etki gösterdiği gözlendi.







Sonuç: Erken dönemde (prenatal-natal) ve
non-invazif tekniklerle eldesi ve atık bir doku olması şeklinde avantajları
olan amniyon sıvısındaki bu kök hücrelerin, immunosupresif etkileri olduğu ve
ileriye yönelik olarak daha ayrıntılı analizlerle ve in vivo çalışmalarla desteklenmesi
gerektiği sonucuna varıldı.

Destekleyen Kurum

Eskişehir osmangazi Üniversitesi

Proje Numarası

2018-46D16

Teşekkür

Bu çalışmada bizi destekleyen Eskişehir Osmangazi Üniversitesi Bilimsel Araştırma Projeleri Komisyonu’na (Proje No: 2018-46D16) sonsuz teşekkürlerimizi sunarız.

Kaynakça

  • 1.Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology. 2005;33(11):1402-16.
  • 2.Burrow KL, Hoyland JA, Rıchardson SM. Human adipose-derived stem cells exhibit enhanced proliferative capacity and retain multipotency longer than donor-matched bone marrow mesenchymal stem cells during expansion in vitro. Stem Cells International. 2017.
  • 3.Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochemical and Biophysical Research Communications. 2005;328(1):258-64.
  • 4.Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochemical and Biophysical Research Communications. 2005;332(2):370-9.
  • 5.Caplan, AI. Mesenchymal stem cells: Time to change the name!. Stem Cells Translational Medicine, 2017; (6.6): 1445-1451.
  • 6.Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101(9):3722-9.
  • 7.Nasef A, Mathieu N, Chapel A, Frick J, François S, Mazurier C, et al. Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation. 2007;84(2):231-7.
  • 8.Grzesiak, J., Krzysztof, M., Karol, W., & Joanna, C.). Isolation and morphological characterisation of ovine adipose-derived mesenchymal stem cells in culture. International Journal of Stem Cells. 2011;4(2): 99.
  • 9.Suva D, Passweg J, Arnaudeau S, Hoffmeyer P, Kindler V. In vitro activated human T lymphocytes very efficiently attach to allogenic multipotent mesenchymal stromal cells and transmigrate under them. Journal of Cellular Physiology. 2008;214(3):588-94.
  • 10.Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology. 2002;30(1):42-8.
  • 11.García-Olmo D, García-Arranz M, Herreros D, Pascual I, Peiro C, Rodríguez-Montes JA. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Diseases of The Colon & Rectum. 2005;48(7):1416-23.
  • 12.Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P, et al. Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Engineering. 2005;11(1-2):120-9.
  • 13.Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture‐expanded human mesenchymal stem cells in vitro. Journal of Cellular Biochemistry. 1997;64(2):295-312.
  • 14.Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA. Culturing satellite cells from living single muscle fiber explants. In Vitro Cellular & Developmental Biology-Animal. 1995;31(10):773-9.
  • 15.Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. The Journal of Clinical Investigation. 2002;109(10):1291-302.
  • 16.Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research. 2000;61(4):364-70.
  • 17.Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences. 2004;101(34):12543-8.
  • 18.Prusa A-R, Hengstschlager M. Amniotic fluid cells and human stem cell research: a new connection. Medical Science Monitor. 2002;8(11):RA253-RA7.
  • 19.Bossolasco P, Montemurro T, Cova L, Zangrossi S, Calzarossa C, Buiatiotis S, et al. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Research. 2006;16(4):329.
  • 20.Kim J, Lee Y, Kim H, Hwang K, Kwon H, Kim S-K, et al. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Proliferation. 2007;40(1):75-90.
  • 21.Holden C, Vogel G. Plasticity: time for a reappraisal?: American Association for The Advancement of Science; 2002.
  • 22.Rice C, Scolding N. Adult stem cells-reprogramming neurological repair? The Lancet. 2004;364(9429):193-9.
  • 23.Fauza D. Amniotic fluid and placental stem cells. Best Practice & Research Clinical Obstetrics & Gynaecology. 2004;18(6):877-91.
  • 24.Hoehn H, Salk D. Morphological and Biochemical Heterogeneity of Amniotic Fluid Cells in Culture. Methods In Cell Biology. 26: Elsevier; 1982. p. 11-34.
  • 25.Gosden CM. Amniotic fluid cell types and culture. British Medical Bulletin. 1983;39(4):348-54.
  • 26.Masuoka K, Asazuma T, Hattori H, Yoshihara Y, Sato M, Matsumura K, et al. Tissue engineering of articular cartilage with autologous cultured adipose tissue-derived stromal cells using atelocollagen honeycomb-shaped scaffold with a membrane sealing in rabbits. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2006;79(1):25-34.
  • 27.Kamolz L-P, Kolbus A, Wick N, Mazal P, Eisenbock B, Burjak S, et al. Cultured human epithelium: human umbilical cord blood stem cells differentiate into keratinocytes under in vitro conditions. Burns. 2006;32(1):16-9.
  • 28.Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ, et al. Intervertebral disc cell–mediated mesenchymal stem cell differentiation. Stem Cells. 2006;24(3):707-16.
  • 29.Kundu AK, Putnam AJ. Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochemical and Biophysical Research Communications. 2006;347(1):347-57.
  • 30.Hattori H, Sato M, Masuoka K, Ishihara M, Kikuchi T, Matsui T, et al. Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs. 2004;178(1):2-12.
  • 31.Zhang X, Mitsuru A, Igura K, Takahashi K, Ichinose S, Yamaguchi S, et al. Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochemical and Biophysical Research Communications. 2006;340(3):944-52.
  • 32.Sariboyaci, A. E., Demircan, P. C., Gacar, G., Unal, Z. S., Erman, G., & Karaoz, E. (2014). Immunomodulatory properties of pancreatic islet-derived stem cells co-cultured with T cells: Does it contribute to the pathogenesis of type 1 diabetes? Experimental and Clinical Endocrinology & Diabetes, 122(03), 179-189.
  • 33.Demircan, P. C., Sariboyaci, A. E., Unal, Z. S., Gacar, G., Subasi, C., & Karaoz, E. (2011). Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotherapy, 13(10), 1205-1220.
  • 34.Sariboyaci AE, Okcu A, Kokturk S, Gacar G, Kasap M, Demircan PÇ, Caliskan E, Ozogul C, Karaoz E. (2009). Isolation, Characterization And Differentation Potential of Human Amniotic Fluid Derived Multipotent Mesenchymal Stem Cells.. 14th Congress Of The European Hematology Association, Berlin, Germany, Haematologica-The Hematology Journal. 94(2), 458-459.
  • 35.Demircan P, Gacar G, Eker A, Karaöz E. Study on the immuno-suppressive characteristics of human dental pulp derived mesenchymal stem cells on T cells in-vitro: initial study outputs. Haematologica. 2010;95:652.
  • 36.Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815-22.
  • 37.Ryan J, Barry F, Murphy J, Mahon BP. Interferon-γ does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clinical & Experimental Immunology. 2007;149(2):353-63.
  • 38.Bian L, Guo Z-K, Wang H-X, Wang J-S, Wang H, Li Q-F, et al. In vitro and in vivo immunosuppressive characteristics of hepatocyte growth factor-modified murine mesenchymal stem cells. In vivo. 2009;23(1):21-7.
  • 39.Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation. 2005;80(6):836-42.
  • 40.Macey MR, Sturgill JL, Morales JK, Falanga YT, Morales J, Norton SK, Yerram N, Shim H, Fernando J, Gifillan AM, Gomez G, Schwartz L, Oskeritzian C, Spiegel S, Conrad D, JRyan JJ.IL-4 and TGF-β1 counterbalance one another while regulating mast cell homeostasis. The Journal of Immunology. 2010;184.(9): 4688-4695.
  • 41.Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. Journal of Experimental Medicine. 1996;184(2):387-96.
  • 42.Maccario R, Podestà M, Moretta A, Cometa A, Comoli P, Montagna D, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica. 2005;90(4):516-25.
  • 43.Plumas J, Chaperot L, Richard M-J, Molens J-P, Bensa J-C, Favrot M-C. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia. 2005;19(9):1597.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Onur Uysal 0000-0001-6800-5607

Tuğba Semerci Sevimli 0000-0003-4856-2304

Sibel Güneş Bu kişi benim 0000-0003-0202-5052

Ahmad Fahim Tokhi Bu kişi benim 0000-0001-8955-2394

Ceren Özel Bu kişi benim 0000-0002-5648-3174

Ayla Eker Sarıboyacı 0000-0003-4536-9859

Proje Numarası 2018-46D16
Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6 Sayı: 4

Kaynak Göster

APA Uysal, O., Semerci Sevimli, T., Güneş, S., Tokhi, A. F., vd. (2019). İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 6(4), 313-321. https://doi.org/10.34087/cbusbed.616566
AMA Uysal O, Semerci Sevimli T, Güneş S, Tokhi AF, Özel C, Eker Sarıboyacı A. İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. CBU-SBED. Aralık 2019;6(4):313-321. doi:10.34087/cbusbed.616566
Chicago Uysal, Onur, Tuğba Semerci Sevimli, Sibel Güneş, Ahmad Fahim Tokhi, Ceren Özel, ve Ayla Eker Sarıboyacı. “İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 6, sy. 4 (Aralık 2019): 313-21. https://doi.org/10.34087/cbusbed.616566.
EndNote Uysal O, Semerci Sevimli T, Güneş S, Tokhi AF, Özel C, Eker Sarıboyacı A (01 Aralık 2019) İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 6 4 313–321.
IEEE O. Uysal, T. Semerci Sevimli, S. Güneş, A. F. Tokhi, C. Özel, ve A. Eker Sarıboyacı, “İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu”, CBU-SBED, c. 6, sy. 4, ss. 313–321, 2019, doi: 10.34087/cbusbed.616566.
ISNAD Uysal, Onur vd. “İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 6/4 (Aralık 2019), 313-321. https://doi.org/10.34087/cbusbed.616566.
JAMA Uysal O, Semerci Sevimli T, Güneş S, Tokhi AF, Özel C, Eker Sarıboyacı A. İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. CBU-SBED. 2019;6:313–321.
MLA Uysal, Onur vd. “İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, c. 6, sy. 4, 2019, ss. 313-21, doi:10.34087/cbusbed.616566.
Vancouver Uysal O, Semerci Sevimli T, Güneş S, Tokhi AF, Özel C, Eker Sarıboyacı A. İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. CBU-SBED. 2019;6(4):313-21.