Araştırma Makalesi
BibTex RIS Kaynak Göster

Parafree metabelian Lie algebras which are determined by parafree Lie algebras

Yıl 2019, Cilt: 68 Sayı: 1, 883 - 888, 01.02.2019
https://doi.org/10.31801/cfsuasmas.485878

Öz

Let L be a Lie algebra. Denote by δ^{k}(L) the k-th term of the derived series of L and by Δ_{w}(L) the intersection of the ideals I of L such that L/I is nilpotent. We prove that if P is a parafree Lie algebra, then the algebra Q=(P/δ^{k}(P))/Δ_{w}(P/δ^{k}(P)), k≥2 is a parafree solvable Lie algebra. Moreover we show that if Q is not free metabelian, then P is not free solvable for k=2.

Kaynakça

  • Baumslag, G., Groups with the same lower central sequence as a relatively free group I. The groups, Trans. Amer. Math. Soc., 129(1967), 308-321.
  • Baumslag, G., Groups with the same lower central sequence as a relatively free group. II Properties, Trans. Amer. Math. Soc., 142(1969), 507-538.
  • Baumslag, G., Parafree groups, Progress in Math., 248(2005), 1-14.
  • Baumslag, G., and Cleary, S., Parafree one-relator groups, J. Group Theory, 9(2006), 191-201.
  • Baumslag, G., and Cleary, S. And Havas, G., Experimenting with infinite group, Experimental Math., 13(2004), 495-502.
  • Baur, H., Parafreie Liealgebren und homologie, Diss. Eth Nr. 6126, (1978), 60 pp.
  • Baur, H., A note on parafree Lie algebras, Commun. in Alg., 8(1980), No.10 953-960.
  • Ekici, N. and Velioğlu, Z., Unions of Parafree Lie Algebras, Algebra, 2014(2014), Article ID 385397.
  • Ekici, N. and Velioğlu, Z., Direct Limit of Parafree Lie Algebras, Journal of Lie Theory 25(2015), No. 2 477-484.
Yıl 2019, Cilt: 68 Sayı: 1, 883 - 888, 01.02.2019
https://doi.org/10.31801/cfsuasmas.485878

Öz

Kaynakça

  • Baumslag, G., Groups with the same lower central sequence as a relatively free group I. The groups, Trans. Amer. Math. Soc., 129(1967), 308-321.
  • Baumslag, G., Groups with the same lower central sequence as a relatively free group. II Properties, Trans. Amer. Math. Soc., 142(1969), 507-538.
  • Baumslag, G., Parafree groups, Progress in Math., 248(2005), 1-14.
  • Baumslag, G., and Cleary, S., Parafree one-relator groups, J. Group Theory, 9(2006), 191-201.
  • Baumslag, G., and Cleary, S. And Havas, G., Experimenting with infinite group, Experimental Math., 13(2004), 495-502.
  • Baur, H., Parafreie Liealgebren und homologie, Diss. Eth Nr. 6126, (1978), 60 pp.
  • Baur, H., A note on parafree Lie algebras, Commun. in Alg., 8(1980), No.10 953-960.
  • Ekici, N. and Velioğlu, Z., Unions of Parafree Lie Algebras, Algebra, 2014(2014), Article ID 385397.
  • Ekici, N. and Velioğlu, Z., Direct Limit of Parafree Lie Algebras, Journal of Lie Theory 25(2015), No. 2 477-484.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Zehra Velioğlu 0000-0001-7151-8534

Yayımlanma Tarihi 1 Şubat 2019
Gönderilme Tarihi 12 Nisan 2018
Kabul Tarihi 28 Mayıs 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 68 Sayı: 1

Kaynak Göster

APA Velioğlu, Z. (2019). Parafree metabelian Lie algebras which are determined by parafree Lie algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 883-888. https://doi.org/10.31801/cfsuasmas.485878
AMA Velioğlu Z. Parafree metabelian Lie algebras which are determined by parafree Lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Şubat 2019;68(1):883-888. doi:10.31801/cfsuasmas.485878
Chicago Velioğlu, Zehra. “Parafree Metabelian Lie Algebras Which Are Determined by Parafree Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, sy. 1 (Şubat 2019): 883-88. https://doi.org/10.31801/cfsuasmas.485878.
EndNote Velioğlu Z (01 Şubat 2019) Parafree metabelian Lie algebras which are determined by parafree Lie algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 883–888.
IEEE Z. Velioğlu, “Parafree metabelian Lie algebras which are determined by parafree Lie algebras”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 68, sy. 1, ss. 883–888, 2019, doi: 10.31801/cfsuasmas.485878.
ISNAD Velioğlu, Zehra. “Parafree Metabelian Lie Algebras Which Are Determined by Parafree Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (Şubat 2019), 883-888. https://doi.org/10.31801/cfsuasmas.485878.
JAMA Velioğlu Z. Parafree metabelian Lie algebras which are determined by parafree Lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:883–888.
MLA Velioğlu, Zehra. “Parafree Metabelian Lie Algebras Which Are Determined by Parafree Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 68, sy. 1, 2019, ss. 883-8, doi:10.31801/cfsuasmas.485878.
Vancouver Velioğlu Z. Parafree metabelian Lie algebras which are determined by parafree Lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):883-8.

Cited By

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.