Research Article
BibTex RIS Cite

On Borel convergence of double sequences

Year 2019, Volume: 68 Issue: 2, 1289 - 1293, 01.08.2019
https://doi.org/10.31801/cfsuasmas.425391

Abstract

In this paper, we introduce the concept of (Ber)-convergence of bounded double sequences in the Fock space F(C²). We show that every (Ber)-convergent double sequence is Borel convergent. Namely, we prove the following theorem by using the Berezin symbol method: If the {x_{ij}}_{i,j=0}^{∞} is regularly convergent to x, then

lim_{k,l→∞}e^{-k-l}∑_{i,j=0}^{∞}x_{ij}((k^{i}t^{j})/(i!j!))=x.

References

  • Aronzajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 68(1950), 337-404.
  • Berezin, F.A., Covariant and contravariant symbols for operators, Math. USSR-Izv., 6(1972), 1117-1151.
  • Garayev, M.T., Gürdal, M. and Yamanci, U., Berezin symbols and Borel Summability, Quaest. Math., 40(3)(2017), 403-411.
  • Hardy, G.H., On the convergence of certain multiplie series, Proc. Cambridge Philos. Soc., 19 (1916-1919), 86-95.
  • Karaev, M.T. and Zelster, M., On Abel convergence of double sequences, Numer. Funct. Anal. Optim., 31(10)(2010), 1185-1189. Nordgren, E. and Rosenthal, P., Boundary Values of Berezin symbols, Oper. Theory Adv. Appl., 73 (1994), 362-368.
  • Pringsheim, A., Elementare theorie der unendliche doppelreihen . Sitsungs Berichte der Math. Akad. der Wissenschafften zu Münch. Ber., 7(1898), 101-153.
  • Saitoh, S., Theory of reproducing kernels and its applications, Pitman Research Notes in Mathematics Series, v.189, 1988.
  • Sawyer, B. and Watson, B., Borel's Methods of Summability: Theory and Applications, Oxford University Press Inc., New York, 1994.
  • Yamancı, U. and Gürdal, M., Statistical convergence and operators on Fock space, New York J. Math., 22 (2016), 199-207.
  • Zelster, M., Investigation methods for summability of double sequences, Ph.D thesis, Tallin, 2001.
Year 2019, Volume: 68 Issue: 2, 1289 - 1293, 01.08.2019
https://doi.org/10.31801/cfsuasmas.425391

Abstract

References

  • Aronzajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 68(1950), 337-404.
  • Berezin, F.A., Covariant and contravariant symbols for operators, Math. USSR-Izv., 6(1972), 1117-1151.
  • Garayev, M.T., Gürdal, M. and Yamanci, U., Berezin symbols and Borel Summability, Quaest. Math., 40(3)(2017), 403-411.
  • Hardy, G.H., On the convergence of certain multiplie series, Proc. Cambridge Philos. Soc., 19 (1916-1919), 86-95.
  • Karaev, M.T. and Zelster, M., On Abel convergence of double sequences, Numer. Funct. Anal. Optim., 31(10)(2010), 1185-1189. Nordgren, E. and Rosenthal, P., Boundary Values of Berezin symbols, Oper. Theory Adv. Appl., 73 (1994), 362-368.
  • Pringsheim, A., Elementare theorie der unendliche doppelreihen . Sitsungs Berichte der Math. Akad. der Wissenschafften zu Münch. Ber., 7(1898), 101-153.
  • Saitoh, S., Theory of reproducing kernels and its applications, Pitman Research Notes in Mathematics Series, v.189, 1988.
  • Sawyer, B. and Watson, B., Borel's Methods of Summability: Theory and Applications, Oxford University Press Inc., New York, 1994.
  • Yamancı, U. and Gürdal, M., Statistical convergence and operators on Fock space, New York J. Math., 22 (2016), 199-207.
  • Zelster, M., Investigation methods for summability of double sequences, Ph.D thesis, Tallin, 2001.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Ulas Yamanci 0000-0002-4709-0993

Publication Date August 1, 2019
Submission Date May 22, 2018
Acceptance Date August 12, 2018
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Yamanci, U. (2019). On Borel convergence of double sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1289-1293. https://doi.org/10.31801/cfsuasmas.425391
AMA Yamanci U. On Borel convergence of double sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1289-1293. doi:10.31801/cfsuasmas.425391
Chicago Yamanci, Ulas. “On Borel Convergence of Double Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1289-93. https://doi.org/10.31801/cfsuasmas.425391.
EndNote Yamanci U (August 1, 2019) On Borel convergence of double sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1289–1293.
IEEE U. Yamanci, “On Borel convergence of double sequences”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1289–1293, 2019, doi: 10.31801/cfsuasmas.425391.
ISNAD Yamanci, Ulas. “On Borel Convergence of Double Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1289-1293. https://doi.org/10.31801/cfsuasmas.425391.
JAMA Yamanci U. On Borel convergence of double sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1289–1293.
MLA Yamanci, Ulas. “On Borel Convergence of Double Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1289-93, doi:10.31801/cfsuasmas.425391.
Vancouver Yamanci U. On Borel convergence of double sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1289-93.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.