Araştırma Makalesi
BibTex RIS Kaynak Göster

On generic submanifold of Sasakian manifold with concurrent vector field

Yıl 2019, Cilt: 68 Sayı: 2, 1983 - 1994, 01.08.2019
https://doi.org/10.31801/cfsuasmas.445788

Öz

In the present paper, we deal with the generic submanifold admitting a Ricci soliton in Sasakian manifold endowed with concurrent vector field. Here, we find that there exists never any concurrent vector field on the invariant distribution D of generic submanifold M. Also, we provide a necessary and sufficient condition for which the invariant distribution D and anti-invariant distribution D^{⊥} of M are Einstein. Finally, we give a characterization for a generic submanifold of Sasakian manifold to be a gradient Ricci soliton.

Kaynakça

  • P. Alegre, Semi-Invariant Submanifolds of Lorentzian Sasakian Manifolds, \emph{Demonstratio Math.} 44:2(2011), 33-38.
  • M. Atçeken, S. Uddin, Semi-invariant submanifolds of a normal almost paracontact manifold, \emph{Filomat} 31(15) (2017), 4875-4887.
  • C. S. Bagewadi, G. Ingalahalli, Ricci solitons in Lorentzian $\alpha-$Sasakian manifolds, \emph{Acta Math. Acad. Paedagog. Nyh\'{a}zi. (N.S)} 28(1) (2012), 59-68.
  • C. L. Bejan, M. Crasmareanu, Second order parallel tensors and Ricci solitons in 3-simensional normal paracontact geometry, \emph{Ann. Glob. Anal. Geom.} 46(2014), 117-127.
  • A. Bejancu, N. Papaghiuc, Semi-invariant submanifolds of Sasakian manifold, \emph{An. St. Univ. AI. I. Cuza. Iasi} 27(1981), 163-170.
  • A. Bejancu, N. Papaghiuc, Semi-invariant submanifolds of a Sasakian space form, \emph{Colloq. Math.} 48(1984), 77-88.
  • A. Bejancu, Geometry of CR-submanifolds, Mathematics and Its Applications (East European Series), (1986).
  • D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 509(1976).
  • B.-Y. Chen, S. Deshmukh, Ricci solitons and concurrent vector fields, \emph{Balkan J. Geom. Appl.} 20(1) (2015), 14-25.
  • B.-Y. Chen, Classification of torqued vector fields and its applications to Ricci solitons, \emph{Kragujevac J. Math.} 41(2) (2017), 239-250.
  • K. L. Duggal, D. L. Jin, Generic lightlike submanifolds of an indefinite SasakianmManifold, \emph{Int. Electron. J. Geom.} 5(1) (2012), 108-119.
  • Ghosh, Certain contact metrics as Ricci almost solitons, \emph{Results Maths.} 65(2014), 81-94.
  • A. Ghosh, Kenmotsu 3-metric as a Ricci soliton, \emph{Chaos, Solitons \& Fractals} 44(8) (2011), 647-650.
  • R. S. Hamilton, Three-manifolds with positive Ricci curvature, \emph{J. Diff. Geom.} 17(2) (1982), 255-306.
  • C. He, M. Zhu, The Ricci solitons on Sasakian manifolds, \emph{arxiv:1109.4407v2.} 2011.
  • G. Ingalahalli, C. S. Bagewadi, Ricci solitons in $\alpha-$Sasakian manifolds, \emph{ISRN Geometry} vol.2012, Article ID 421384, 13 Pages, (2012).
  • M. A. Khan, M. Z. Khan, Totally umbilical semi-invariant submanifolds of a nearly cosymplectic manifold, \emph{Filomat} 20(2) (2006), 33-38.
  • M. E. A. Mekki, A. M. Cherif, Generalised Ricci solitons on Sasakian manifolds, \emph{Kyungpook Math. J.} 57(4) (2017), 677-682.
  • A. Mihai and R. Roşça, On a class of Einstein space-time manifolds, \emph{Publ. Math. Debrecen} 67(2005), 471-480.
  • H. G. Nagaraja, K. Venu, Ricci solitons in Kenmotsu manifolds, \emph{Journal of Informatic and Mathematical Sciences} 8(1) (2016) 29-36.
  • S. Y. Perktaş, S. Keleş, Ricci solitons in 3-dimensional normal almost paracontact metric manifolds, \emph{Int. Electron. J. Geom.} 8(2) (2015), 34-45.
  • M. Petroviç, R. Roşça and L. Verstraelen, Exterior concurrent vector fields on Riemannian manifolds. I. some general results, \emph{Soochow J. Math.} 15(1989), 179-187.
  • R. Sharma, Certain results on K-contact and $(k,\mu)-$contact manifolds, \emph{J. Geom.} 89, no.1-2 (2008), 138-147.
  • R. Sharma, A. Ghosh, Sasakian 3-manifolds as a Ricci soliton represents the Heisenberg group, \emph{Int. J. Geom. Methods Mod. Phys} 8(1) (2011), 149-154.
  • M. D. Siddiqi, M. Haseeb, M. Ahmad, Skew semi-invariant submanifolds of generalized quasi-Sasakian manifolds, \emph{Carpathian Math. Publ.} 9(2) (2017), 188-197.
  • M. M. Tripathi, Ricci solitons in contact cetric manifolds, \emph{arXiv:0801.4222v1 [math DG]} (2008).
  • K. Yano, Sur le parall\'{e}lisme et la concourance dans l'escape de Riemannian, \emph{Proc. Imp. Acad. Tokyo} 19(1943), 189-197.
  • K. Yano, B.-Y. Chen, On the concurrent vector fields of immersed manifolds, \emph{Kodai Math. Sem. Rep.} 23(1971), 343-350.
  • K. Yano, M. Kon, Structures on manifolds, Series in Mathematics, World Scientific Publishing, Springer, (1984).
Yıl 2019, Cilt: 68 Sayı: 2, 1983 - 1994, 01.08.2019
https://doi.org/10.31801/cfsuasmas.445788

Öz

Kaynakça

  • P. Alegre, Semi-Invariant Submanifolds of Lorentzian Sasakian Manifolds, \emph{Demonstratio Math.} 44:2(2011), 33-38.
  • M. Atçeken, S. Uddin, Semi-invariant submanifolds of a normal almost paracontact manifold, \emph{Filomat} 31(15) (2017), 4875-4887.
  • C. S. Bagewadi, G. Ingalahalli, Ricci solitons in Lorentzian $\alpha-$Sasakian manifolds, \emph{Acta Math. Acad. Paedagog. Nyh\'{a}zi. (N.S)} 28(1) (2012), 59-68.
  • C. L. Bejan, M. Crasmareanu, Second order parallel tensors and Ricci solitons in 3-simensional normal paracontact geometry, \emph{Ann. Glob. Anal. Geom.} 46(2014), 117-127.
  • A. Bejancu, N. Papaghiuc, Semi-invariant submanifolds of Sasakian manifold, \emph{An. St. Univ. AI. I. Cuza. Iasi} 27(1981), 163-170.
  • A. Bejancu, N. Papaghiuc, Semi-invariant submanifolds of a Sasakian space form, \emph{Colloq. Math.} 48(1984), 77-88.
  • A. Bejancu, Geometry of CR-submanifolds, Mathematics and Its Applications (East European Series), (1986).
  • D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 509(1976).
  • B.-Y. Chen, S. Deshmukh, Ricci solitons and concurrent vector fields, \emph{Balkan J. Geom. Appl.} 20(1) (2015), 14-25.
  • B.-Y. Chen, Classification of torqued vector fields and its applications to Ricci solitons, \emph{Kragujevac J. Math.} 41(2) (2017), 239-250.
  • K. L. Duggal, D. L. Jin, Generic lightlike submanifolds of an indefinite SasakianmManifold, \emph{Int. Electron. J. Geom.} 5(1) (2012), 108-119.
  • Ghosh, Certain contact metrics as Ricci almost solitons, \emph{Results Maths.} 65(2014), 81-94.
  • A. Ghosh, Kenmotsu 3-metric as a Ricci soliton, \emph{Chaos, Solitons \& Fractals} 44(8) (2011), 647-650.
  • R. S. Hamilton, Three-manifolds with positive Ricci curvature, \emph{J. Diff. Geom.} 17(2) (1982), 255-306.
  • C. He, M. Zhu, The Ricci solitons on Sasakian manifolds, \emph{arxiv:1109.4407v2.} 2011.
  • G. Ingalahalli, C. S. Bagewadi, Ricci solitons in $\alpha-$Sasakian manifolds, \emph{ISRN Geometry} vol.2012, Article ID 421384, 13 Pages, (2012).
  • M. A. Khan, M. Z. Khan, Totally umbilical semi-invariant submanifolds of a nearly cosymplectic manifold, \emph{Filomat} 20(2) (2006), 33-38.
  • M. E. A. Mekki, A. M. Cherif, Generalised Ricci solitons on Sasakian manifolds, \emph{Kyungpook Math. J.} 57(4) (2017), 677-682.
  • A. Mihai and R. Roşça, On a class of Einstein space-time manifolds, \emph{Publ. Math. Debrecen} 67(2005), 471-480.
  • H. G. Nagaraja, K. Venu, Ricci solitons in Kenmotsu manifolds, \emph{Journal of Informatic and Mathematical Sciences} 8(1) (2016) 29-36.
  • S. Y. Perktaş, S. Keleş, Ricci solitons in 3-dimensional normal almost paracontact metric manifolds, \emph{Int. Electron. J. Geom.} 8(2) (2015), 34-45.
  • M. Petroviç, R. Roşça and L. Verstraelen, Exterior concurrent vector fields on Riemannian manifolds. I. some general results, \emph{Soochow J. Math.} 15(1989), 179-187.
  • R. Sharma, Certain results on K-contact and $(k,\mu)-$contact manifolds, \emph{J. Geom.} 89, no.1-2 (2008), 138-147.
  • R. Sharma, A. Ghosh, Sasakian 3-manifolds as a Ricci soliton represents the Heisenberg group, \emph{Int. J. Geom. Methods Mod. Phys} 8(1) (2011), 149-154.
  • M. D. Siddiqi, M. Haseeb, M. Ahmad, Skew semi-invariant submanifolds of generalized quasi-Sasakian manifolds, \emph{Carpathian Math. Publ.} 9(2) (2017), 188-197.
  • M. M. Tripathi, Ricci solitons in contact cetric manifolds, \emph{arXiv:0801.4222v1 [math DG]} (2008).
  • K. Yano, Sur le parall\'{e}lisme et la concourance dans l'escape de Riemannian, \emph{Proc. Imp. Acad. Tokyo} 19(1943), 189-197.
  • K. Yano, B.-Y. Chen, On the concurrent vector fields of immersed manifolds, \emph{Kodai Math. Sem. Rep.} 23(1971), 343-350.
  • K. Yano, M. Kon, Structures on manifolds, Series in Mathematics, World Scientific Publishing, Springer, (1984).
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Halil İbrahim Yoldaş

Şemsi Eken Meriç Bu kişi benim

Erol Yaşar Bu kişi benim

Yayımlanma Tarihi 1 Ağustos 2019
Gönderilme Tarihi 19 Temmuz 2018
Kabul Tarihi 10 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 68 Sayı: 2

Kaynak Göster

APA Yoldaş, H. İ., Eken Meriç, Ş., & Yaşar, E. (2019). On generic submanifold of Sasakian manifold with concurrent vector field. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1983-1994. https://doi.org/10.31801/cfsuasmas.445788
AMA Yoldaş Hİ, Eken Meriç Ş, Yaşar E. On generic submanifold of Sasakian manifold with concurrent vector field. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Ağustos 2019;68(2):1983-1994. doi:10.31801/cfsuasmas.445788
Chicago Yoldaş, Halil İbrahim, Şemsi Eken Meriç, ve Erol Yaşar. “On Generic Submanifold of Sasakian Manifold With Concurrent Vector Field”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, sy. 2 (Ağustos 2019): 1983-94. https://doi.org/10.31801/cfsuasmas.445788.
EndNote Yoldaş Hİ, Eken Meriç Ş, Yaşar E (01 Ağustos 2019) On generic submanifold of Sasakian manifold with concurrent vector field. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1983–1994.
IEEE H. İ. Yoldaş, Ş. Eken Meriç, ve E. Yaşar, “On generic submanifold of Sasakian manifold with concurrent vector field”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 68, sy. 2, ss. 1983–1994, 2019, doi: 10.31801/cfsuasmas.445788.
ISNAD Yoldaş, Halil İbrahim vd. “On Generic Submanifold of Sasakian Manifold With Concurrent Vector Field”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (Ağustos 2019), 1983-1994. https://doi.org/10.31801/cfsuasmas.445788.
JAMA Yoldaş Hİ, Eken Meriç Ş, Yaşar E. On generic submanifold of Sasakian manifold with concurrent vector field. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1983–1994.
MLA Yoldaş, Halil İbrahim vd. “On Generic Submanifold of Sasakian Manifold With Concurrent Vector Field”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 68, sy. 2, 2019, ss. 1983-94, doi:10.31801/cfsuasmas.445788.
Vancouver Yoldaş Hİ, Eken Meriç Ş, Yaşar E. On generic submanifold of Sasakian manifold with concurrent vector field. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1983-94.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.