Research Article
BibTex RIS Cite
Year 2019, Volume: 68 Issue: 2, 1316 - 1334, 01.08.2019
https://doi.org/10.31801/cfsuasmas.526270

Abstract

References

  • Naimark, M.A., Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operator of the second order on a semi-axis, American Mathematical Society Translations Series 2, 16, (1960), 103--193.
  • Lyance, V.E., A differential operator with spectral singularities I, II, American Mathematical Society Transactions Series 2, 60, (1967), 185--225, 227--283.
  • Gasymov, M.G. and Maksudov, F.G., The principal part of the resolvent of non-selfadjoint opeerators in neighbourhood of spectral singularities, Func. Anal. Appl, 6, (1972), 185--192.
  • Maksudov, F.G. and Allakhverdiev, B.P., Spectral analysis of a new class of non-selfadjoint operators with continuous and point spectrum, Soviet Math. Dokl., 30, (1984), 566--569.
  • Adıvar, M. and Bairamov, E., Spectral properties of non-selfadjoint difference operators, Journal of Mathematical Analysis and Applications, 261(2), (2001), 461--478.
  • Bairamov, E., Çakar, Ö. and Yanık, C., Spectral singularities of the Klein-Gordon s-wave equation, Indian Journal of Pure and Applied Mathematics, 32(6), (2001), 851--857.
  • Bairamov, E. and Çelebi, A.O., Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators, The Quarterly Journal of Mathematics. Oxford Second Series, 50(200), (1999), 371--384.
  • Bairamov, E. and Karaman, Ö., Spectral singularities of the Klein-Gordon s-wave equations with and integral boundary conditions, Acta Mathematica Hungarica, 97(1--2), (2002), 121--131.
  • Krall, A.M., Bairamov, E. and Çakar, Ö., Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, Journal of Differential Equations, 151(2), (1999), 252--267.
  • Krall, A.M., Bairamov, E. and Çakar, Ö., Spectral analysis of non-selfadjoint discrete Schrödinger operators with spectral singularities, Mathematische Nachrichten, 231, (2001), 89--104.
  • Marchenko, V.A., Expansion in eigenfunctions of non-selfadjoint singular second-order differential operators, American Mathematical Society Transactions Series 2, 25, (1963), 99.77--130.
  • Başcanbaz-Tunca, G, Spectral expasion of a non-selfadjoint differential operator on the whole axis, J.Math.Anal.Appl., 252(1), (2000), 278--297.
  • Kır Arpat, E., An eingenfunction expansion of the non-selfadjoint Sturm-Liouville operator with a singular potential, Journal of Mathematical Chemistry, 51(8), (2013), 2196--2213.
  • Bairamov, E. and Yokuş, N., Spectral singularities of Sturm-Liouville problems with eigenvalue-dependent boundary conditions, Abstract and Applied Analysis, 2009, Article ID 289596, (2009), 8 pages.
  • Yokuş, N., Principal functions of non-selfadjoint sturm-liouville problems with eigenvalue-dependent boundary conditions, Abstract and Applied Analysis, 2011, Article ID 358912, (2011), 12 pages.

Spectral expansion of Sturm-Liouville problems with eigenvalue-dependent boundary conditions

Year 2019, Volume: 68 Issue: 2, 1316 - 1334, 01.08.2019
https://doi.org/10.31801/cfsuasmas.526270

Abstract

In this paper, we consider the operator L generated in L₂(R₊) by the differential expression

l(y)=-y′′+q(x)y,x∈R₊:=[0,∞)

 and the boundary condition

((y′(0))/(y(0)))=α₀+α₁λ+α₂λ²,

 where q is a complex valued function and α_{i}∈C,[mbox]<LaTeX>\mbox{\:}</LaTeX>i=0,1,2α₂. We have proved that spectral expansion of L in terms of the principal functions under the condition

q∈AC(R₊),  lim_{x→∞}q(x)=0,  sup[e^{ε√x}|q′(x)|]<∞,  ε>0

taking into account the spectral singularities. We have also proved the convergence of the spectral expansion.

References

  • Naimark, M.A., Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operator of the second order on a semi-axis, American Mathematical Society Translations Series 2, 16, (1960), 103--193.
  • Lyance, V.E., A differential operator with spectral singularities I, II, American Mathematical Society Transactions Series 2, 60, (1967), 185--225, 227--283.
  • Gasymov, M.G. and Maksudov, F.G., The principal part of the resolvent of non-selfadjoint opeerators in neighbourhood of spectral singularities, Func. Anal. Appl, 6, (1972), 185--192.
  • Maksudov, F.G. and Allakhverdiev, B.P., Spectral analysis of a new class of non-selfadjoint operators with continuous and point spectrum, Soviet Math. Dokl., 30, (1984), 566--569.
  • Adıvar, M. and Bairamov, E., Spectral properties of non-selfadjoint difference operators, Journal of Mathematical Analysis and Applications, 261(2), (2001), 461--478.
  • Bairamov, E., Çakar, Ö. and Yanık, C., Spectral singularities of the Klein-Gordon s-wave equation, Indian Journal of Pure and Applied Mathematics, 32(6), (2001), 851--857.
  • Bairamov, E. and Çelebi, A.O., Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators, The Quarterly Journal of Mathematics. Oxford Second Series, 50(200), (1999), 371--384.
  • Bairamov, E. and Karaman, Ö., Spectral singularities of the Klein-Gordon s-wave equations with and integral boundary conditions, Acta Mathematica Hungarica, 97(1--2), (2002), 121--131.
  • Krall, A.M., Bairamov, E. and Çakar, Ö., Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, Journal of Differential Equations, 151(2), (1999), 252--267.
  • Krall, A.M., Bairamov, E. and Çakar, Ö., Spectral analysis of non-selfadjoint discrete Schrödinger operators with spectral singularities, Mathematische Nachrichten, 231, (2001), 89--104.
  • Marchenko, V.A., Expansion in eigenfunctions of non-selfadjoint singular second-order differential operators, American Mathematical Society Transactions Series 2, 25, (1963), 99.77--130.
  • Başcanbaz-Tunca, G, Spectral expasion of a non-selfadjoint differential operator on the whole axis, J.Math.Anal.Appl., 252(1), (2000), 278--297.
  • Kır Arpat, E., An eingenfunction expansion of the non-selfadjoint Sturm-Liouville operator with a singular potential, Journal of Mathematical Chemistry, 51(8), (2013), 2196--2213.
  • Bairamov, E. and Yokuş, N., Spectral singularities of Sturm-Liouville problems with eigenvalue-dependent boundary conditions, Abstract and Applied Analysis, 2009, Article ID 289596, (2009), 8 pages.
  • Yokuş, N., Principal functions of non-selfadjoint sturm-liouville problems with eigenvalue-dependent boundary conditions, Abstract and Applied Analysis, 2011, Article ID 358912, (2011), 12 pages.
There are 15 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Nihal Yokuş 0000-0002-5327-2312

Esra Kır Arpat 0000-0002-6322-5130

Publication Date August 1, 2019
Submission Date November 14, 2017
Acceptance Date August 6, 2018
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Yokuş, N., & Kır Arpat, E. (2019). Spectral expansion of Sturm-Liouville problems with eigenvalue-dependent boundary conditions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1316-1334. https://doi.org/10.31801/cfsuasmas.526270
AMA Yokuş N, Kır Arpat E. Spectral expansion of Sturm-Liouville problems with eigenvalue-dependent boundary conditions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1316-1334. doi:10.31801/cfsuasmas.526270
Chicago Yokuş, Nihal, and Esra Kır Arpat. “Spectral Expansion of Sturm-Liouville Problems With Eigenvalue-Dependent Boundary Conditions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1316-34. https://doi.org/10.31801/cfsuasmas.526270.
EndNote Yokuş N, Kır Arpat E (August 1, 2019) Spectral expansion of Sturm-Liouville problems with eigenvalue-dependent boundary conditions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1316–1334.
IEEE N. Yokuş and E. Kır Arpat, “Spectral expansion of Sturm-Liouville problems with eigenvalue-dependent boundary conditions”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1316–1334, 2019, doi: 10.31801/cfsuasmas.526270.
ISNAD Yokuş, Nihal - Kır Arpat, Esra. “Spectral Expansion of Sturm-Liouville Problems With Eigenvalue-Dependent Boundary Conditions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1316-1334. https://doi.org/10.31801/cfsuasmas.526270.
JAMA Yokuş N, Kır Arpat E. Spectral expansion of Sturm-Liouville problems with eigenvalue-dependent boundary conditions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1316–1334.
MLA Yokuş, Nihal and Esra Kır Arpat. “Spectral Expansion of Sturm-Liouville Problems With Eigenvalue-Dependent Boundary Conditions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1316-34, doi:10.31801/cfsuasmas.526270.
Vancouver Yokuş N, Kır Arpat E. Spectral expansion of Sturm-Liouville problems with eigenvalue-dependent boundary conditions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1316-34.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.