Research Article
BibTex RIS Cite

I-lacunary statistical convergence of weighted g via modulus functions in 2-normed spaces

Year 2019, Volume: 68 Issue: 2, 2324 - 2332, 01.08.2019
https://doi.org/10.31801/cfsuasmas.573396

Abstract

In this paper, we introduce new concepts of I-statistical convergence and I-lacunary statistical convergence using weighted density via modulus functions. Also, we study the relationship between them and obtain some interesting results.

References

  • Balcerzak, M., Das, P., Filipczak, M. and Swaczyna, J., Generalized kinds of density and the associated ideals, Acta Math. Hungar. 147, (2015), 97--115.
  • Bose, K., Das, P. and Kwela, A., Generating new ideals using weighted density via modulus functions, Indag. Math. 29(5), (2018), 1196--1209.
  • Das, P., Savaş E. and Ghosal, S., On generalized of certain summability methods using ideals, Appl. Math. Lett. 26, (2011), 1509--1514.
  • Fast, H., Sur la convergence statistique, Colloq. Math., 2(1951), 241--244.
  • Fridy, J. A. and Orhan, C., Lacunary statistical convergence, Pacific J. Math. 160, (1993), 43--51.
  • Gähler, S., 2-metrische Räume und ihre topologische struktur, Math. Nachr. 26, (1993), 115--148.
  • Gürdal, M., On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4(1), (2006), 85--91.
  • Gürdal, M. and Açık, I., On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 2(1), (2008), 349--354.
  • Gürdal, M. and Yamancı, U., Statistical convergence and some questions of operator theory, Dynam. Syst. Appl. 24, (2015), 305--312.
  • Kostyrko, P.,Šalát, T. and Wilezynski, W., I-Convergence, Real Anal. Exchange 26(2), (2000), 669--686.
  • Mursaleen, M. and Alotaibi, A., On I-convergence in random 2-normed space, Math. Slovaca 61(6), (2011), 933--940.
  • Nabiev, A., Pehlivan, S. and Gürdal, M., On I-Cauchy sequences, Taiwanese J. Math. 11(2), (2007), 569--576.
  • Şahiner, A., Gürdal, M., Saltan, S. and Gunawan, H., Ideal Convergence in 2-normed Spaces, Taiwanese J. Math. 11(4), (2007), 1477--1484.
  • Savaş, E., On lacunary strong σ-convergence, Indian J. Pure Appl. Math. 21, (1990), 359--365.
  • Savaş, E. and Karakaya, V., Some new sequence spaces defined by lacunary sequences, Math. Slovaca 57, (2007), 393--399.
  • Savaş, E. and Patterson, R. F., Double σ-convergence lacunary statistical sequences, J. Comput. Anal. Appl. 11, (2009), 610--615.
  • Savaş, E. and Das, P., A generalized statistical convergence via ideals, Appl. Math. Letters 24, (2011), 826--830.
  • Savaş, E., Das, P. and Dutta, S., A note on strong matrix summability via ideals, Appl. Math Letters 25, (2012) 733--738.
  • Savaş, E., On I-lacunary statistical convergence of order α for sequences of sets, Filomat 29, (2015), 1223--1229.
  • Schoenberg, I. J., The integrability of certain functions and related summability methods, Am. Math. Mon. 66, (1959), 361--375.
  • Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2, (1951), 73--74.
  • Ulusu, U. and Nuray, F., Lacunary statistical convergence of sequence of sets, Progress Appl. Math. 4, (2012), 99--109.
  • Ulusu, U. and Dündar, E., I-lacunary statistical convergence of sequences of sets, Filomat 28(8), (2014), 1567--1574.
  • Yamancı, U. and Gürdal, M., I-statistical convergence in 2-normed space, Arab J. Math. Sci. 20(1), (2014), 41--47.
  • Yamancı, U. and Gürdal, M., Statistical convergence and operators on Fock space, New York J. Math. 22, (2016), 199--207.
  • Yegül, S. and Dündar, E., On statistical convergence of sequences of functions in 2-normed spaces, J. Classical Anal. 10(1), (2017), 49--57.
Year 2019, Volume: 68 Issue: 2, 2324 - 2332, 01.08.2019
https://doi.org/10.31801/cfsuasmas.573396

Abstract

References

  • Balcerzak, M., Das, P., Filipczak, M. and Swaczyna, J., Generalized kinds of density and the associated ideals, Acta Math. Hungar. 147, (2015), 97--115.
  • Bose, K., Das, P. and Kwela, A., Generating new ideals using weighted density via modulus functions, Indag. Math. 29(5), (2018), 1196--1209.
  • Das, P., Savaş E. and Ghosal, S., On generalized of certain summability methods using ideals, Appl. Math. Lett. 26, (2011), 1509--1514.
  • Fast, H., Sur la convergence statistique, Colloq. Math., 2(1951), 241--244.
  • Fridy, J. A. and Orhan, C., Lacunary statistical convergence, Pacific J. Math. 160, (1993), 43--51.
  • Gähler, S., 2-metrische Räume und ihre topologische struktur, Math. Nachr. 26, (1993), 115--148.
  • Gürdal, M., On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4(1), (2006), 85--91.
  • Gürdal, M. and Açık, I., On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 2(1), (2008), 349--354.
  • Gürdal, M. and Yamancı, U., Statistical convergence and some questions of operator theory, Dynam. Syst. Appl. 24, (2015), 305--312.
  • Kostyrko, P.,Šalát, T. and Wilezynski, W., I-Convergence, Real Anal. Exchange 26(2), (2000), 669--686.
  • Mursaleen, M. and Alotaibi, A., On I-convergence in random 2-normed space, Math. Slovaca 61(6), (2011), 933--940.
  • Nabiev, A., Pehlivan, S. and Gürdal, M., On I-Cauchy sequences, Taiwanese J. Math. 11(2), (2007), 569--576.
  • Şahiner, A., Gürdal, M., Saltan, S. and Gunawan, H., Ideal Convergence in 2-normed Spaces, Taiwanese J. Math. 11(4), (2007), 1477--1484.
  • Savaş, E., On lacunary strong σ-convergence, Indian J. Pure Appl. Math. 21, (1990), 359--365.
  • Savaş, E. and Karakaya, V., Some new sequence spaces defined by lacunary sequences, Math. Slovaca 57, (2007), 393--399.
  • Savaş, E. and Patterson, R. F., Double σ-convergence lacunary statistical sequences, J. Comput. Anal. Appl. 11, (2009), 610--615.
  • Savaş, E. and Das, P., A generalized statistical convergence via ideals, Appl. Math. Letters 24, (2011), 826--830.
  • Savaş, E., Das, P. and Dutta, S., A note on strong matrix summability via ideals, Appl. Math Letters 25, (2012) 733--738.
  • Savaş, E., On I-lacunary statistical convergence of order α for sequences of sets, Filomat 29, (2015), 1223--1229.
  • Schoenberg, I. J., The integrability of certain functions and related summability methods, Am. Math. Mon. 66, (1959), 361--375.
  • Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2, (1951), 73--74.
  • Ulusu, U. and Nuray, F., Lacunary statistical convergence of sequence of sets, Progress Appl. Math. 4, (2012), 99--109.
  • Ulusu, U. and Dündar, E., I-lacunary statistical convergence of sequences of sets, Filomat 28(8), (2014), 1567--1574.
  • Yamancı, U. and Gürdal, M., I-statistical convergence in 2-normed space, Arab J. Math. Sci. 20(1), (2014), 41--47.
  • Yamancı, U. and Gürdal, M., Statistical convergence and operators on Fock space, New York J. Math. 22, (2016), 199--207.
  • Yegül, S. and Dündar, E., On statistical convergence of sequences of functions in 2-normed spaces, J. Classical Anal. 10(1), (2017), 49--57.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Ekrem Savaş 0000-0003-2135-3094

Ulas Yamanci 0000-0002-4709-0993

Mehmet Gürdal 0000-0003-0866-1869

Publication Date August 1, 2019
Submission Date June 2, 2019
Acceptance Date July 9, 2019
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Savaş, E., Yamanci, U., & Gürdal, M. (2019). I-lacunary statistical convergence of weighted g via modulus functions in 2-normed spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 2324-2332. https://doi.org/10.31801/cfsuasmas.573396
AMA Savaş E, Yamanci U, Gürdal M. I-lacunary statistical convergence of weighted g via modulus functions in 2-normed spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):2324-2332. doi:10.31801/cfsuasmas.573396
Chicago Savaş, Ekrem, Ulas Yamanci, and Mehmet Gürdal. “I-Lacunary Statistical Convergence of Weighted G via Modulus Functions in 2-Normed Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 2324-32. https://doi.org/10.31801/cfsuasmas.573396.
EndNote Savaş E, Yamanci U, Gürdal M (August 1, 2019) I-lacunary statistical convergence of weighted g via modulus functions in 2-normed spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 2324–2332.
IEEE E. Savaş, U. Yamanci, and M. Gürdal, “I-lacunary statistical convergence of weighted g via modulus functions in 2-normed spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 2324–2332, 2019, doi: 10.31801/cfsuasmas.573396.
ISNAD Savaş, Ekrem et al. “I-Lacunary Statistical Convergence of Weighted G via Modulus Functions in 2-Normed Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 2324-2332. https://doi.org/10.31801/cfsuasmas.573396.
JAMA Savaş E, Yamanci U, Gürdal M. I-lacunary statistical convergence of weighted g via modulus functions in 2-normed spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:2324–2332.
MLA Savaş, Ekrem et al. “I-Lacunary Statistical Convergence of Weighted G via Modulus Functions in 2-Normed Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 2324-32, doi:10.31801/cfsuasmas.573396.
Vancouver Savaş E, Yamanci U, Gürdal M. I-lacunary statistical convergence of weighted g via modulus functions in 2-normed spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):2324-32.

Cited By

An investigation on the triple ideal convergent sequences in fuzzy metric spaces
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.890982

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.