Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 70 Sayı: 1, 510 - 521, 30.06.2021
https://doi.org/10.31801/cfsuasmas.724634

Öz

Kaynakça

  • Ding, Q., Inoguchi, J., Schrödinger flows, binormal motion for curves and second AKNS-hierarchies, Chaos Solitons and Fractals, 21 (3) (2004), 669-677. https://doi.org/10.1016/j.chaos.2003.12.092
  • Erdogdu, M., Özdemir, M., Geometry of Hasimoto surfaces in Minkowski 3-space, Math. Phys. Anal. Geom., 17 (1) (2014), 169-181. DOI:10.1007/s11040-014-9148-3
  • Fujika, A., Inoguchi, J., Spacelike surfaces with harmonic inverse mean curvature, J. Math. Sci. Univ. Tokyo, 7 (4) (2000), 657-698.
  • Grbovic, M. and Nesovic, E., On Bäcklund transformation and vortex filament equation for pseudo null curves in Minkowski 3-space, Int. J. Geom. Methods Mod. Phys. 13 (6) (2016), 1-14. https://doi.org/10.1142/S0219887816500778
  • Gürbüz, N., Intrinstic geometry of NLS equation and heat system in 3-dimensional Minkowski space, Adv. Stud. Theor., 4 (1) (2010), 557-564.
  • Gürbüz, N., The motion of timelike surfaces in timelike geodesic coordinates, Int. J. Math. Anal., 4 (2010), 349-356.
  • Hasimoto, H., A soliton on a vortex filament, J. Fluid. Mech., 51 (3) (1972), 477-485. https://doi.org/10.1017/S0022112072002307
  • Inoguchi, J., Timelike surfaces of constant mean curvature in Minkowski 3-space, Tokyo J. Math., 21 (1) (1998), 141-152.DOI:10.3836/tjm/1270041992
  • Inoguchi, J., Biharmonic curves in Minkowski 3-space, Int. J. Math. Math. Sci., (2003), 1365-1368. https://doi.org/10.1155/S016117120320805X
  • Kelleci, A., Bekta¸s, M., Ergüt, M., The Hasimoto surface according to bishop frame, Adıyaman University Journal of Science, 9 (2019 ), 13-22.
  • Özdemir, M., Ergin, A.A., Rotations with unit timelike quaternions in Minkowski 3-space, J. Geom. Phys., 56 (2) (2006), 322-336. https://doi.org/10.1016/j.geomphys.2005.02.004
  • Özdemir, M., Ergin, A.A., Parallel frames of non-lightlike curves, Missouri Journal of Mathematical Sciences, 20 (2) (2008), 127-137. DOI:10.35834/mjms/1316032813
  • Rogers, C., Schief, W.K., Intrinsic geometry of the NLS equation and its backlund transformation, Stud. Appl. Math., 101 (3) (1998), 267-288. https://doi.org/10.1111/14679590.00093
  • Rogers, C., Schief, W.K., Backlund and Darboux Transformations: Geometry of Modern Applications in Soliton Theory, Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511606359
  • Schief, W.K., Rogers, C., Binormal motion of curves of constant curvature and torsion, generation of soliton surfaces, Proc. R. Soc. Lond. A., 455 (1988) (1999), 3163-3188. https://doi.org/10.1098/rspa.1999.0445
  • Marris, A. W., Passman, S. L., Vector fields and flows on developable surfaces, Arch. Ration. Mech. Anal., 32 (1) (1969), 29-86. https://doi.org/10.1007/BF00253256
  • Rogers, C., Kingston, J. G. Nondissipative magneto-hydrodynamic flows with magnetic and velocity field lines orthogonal geodesics, SIAM J. Appl. Math., 26 (1) (1974), 183-195. https://doi.org/10.1137/0126015

Differential geometric aspects of nonlinear Schrödinger equation

Yıl 2021, Cilt: 70 Sayı: 1, 510 - 521, 30.06.2021
https://doi.org/10.31801/cfsuasmas.724634

Öz

The main scope of this paper is to examine the smoke ring (or vortex filament) equation which can be viewed as a dynamical system on the space curve in E³. The differential geometric properties the soliton surface accociated with Nonlinear Schrödinger (NLS) equation, which is called NLS surface or Hasimoto surface, are investigated by using Darboux frame. Moreover, Gaussian and mean curvature of Hasimoto surface are found in terms of Darboux curvatures k_{n}, k_{g} and τ_{g.}. Then, we give a different proof of that the s- parameter curves of NLS surface are the geodesics of the soliton surface. As applications we examine two NLS surfaces with Darboux Frame.

Kaynakça

  • Ding, Q., Inoguchi, J., Schrödinger flows, binormal motion for curves and second AKNS-hierarchies, Chaos Solitons and Fractals, 21 (3) (2004), 669-677. https://doi.org/10.1016/j.chaos.2003.12.092
  • Erdogdu, M., Özdemir, M., Geometry of Hasimoto surfaces in Minkowski 3-space, Math. Phys. Anal. Geom., 17 (1) (2014), 169-181. DOI:10.1007/s11040-014-9148-3
  • Fujika, A., Inoguchi, J., Spacelike surfaces with harmonic inverse mean curvature, J. Math. Sci. Univ. Tokyo, 7 (4) (2000), 657-698.
  • Grbovic, M. and Nesovic, E., On Bäcklund transformation and vortex filament equation for pseudo null curves in Minkowski 3-space, Int. J. Geom. Methods Mod. Phys. 13 (6) (2016), 1-14. https://doi.org/10.1142/S0219887816500778
  • Gürbüz, N., Intrinstic geometry of NLS equation and heat system in 3-dimensional Minkowski space, Adv. Stud. Theor., 4 (1) (2010), 557-564.
  • Gürbüz, N., The motion of timelike surfaces in timelike geodesic coordinates, Int. J. Math. Anal., 4 (2010), 349-356.
  • Hasimoto, H., A soliton on a vortex filament, J. Fluid. Mech., 51 (3) (1972), 477-485. https://doi.org/10.1017/S0022112072002307
  • Inoguchi, J., Timelike surfaces of constant mean curvature in Minkowski 3-space, Tokyo J. Math., 21 (1) (1998), 141-152.DOI:10.3836/tjm/1270041992
  • Inoguchi, J., Biharmonic curves in Minkowski 3-space, Int. J. Math. Math. Sci., (2003), 1365-1368. https://doi.org/10.1155/S016117120320805X
  • Kelleci, A., Bekta¸s, M., Ergüt, M., The Hasimoto surface according to bishop frame, Adıyaman University Journal of Science, 9 (2019 ), 13-22.
  • Özdemir, M., Ergin, A.A., Rotations with unit timelike quaternions in Minkowski 3-space, J. Geom. Phys., 56 (2) (2006), 322-336. https://doi.org/10.1016/j.geomphys.2005.02.004
  • Özdemir, M., Ergin, A.A., Parallel frames of non-lightlike curves, Missouri Journal of Mathematical Sciences, 20 (2) (2008), 127-137. DOI:10.35834/mjms/1316032813
  • Rogers, C., Schief, W.K., Intrinsic geometry of the NLS equation and its backlund transformation, Stud. Appl. Math., 101 (3) (1998), 267-288. https://doi.org/10.1111/14679590.00093
  • Rogers, C., Schief, W.K., Backlund and Darboux Transformations: Geometry of Modern Applications in Soliton Theory, Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511606359
  • Schief, W.K., Rogers, C., Binormal motion of curves of constant curvature and torsion, generation of soliton surfaces, Proc. R. Soc. Lond. A., 455 (1988) (1999), 3163-3188. https://doi.org/10.1098/rspa.1999.0445
  • Marris, A. W., Passman, S. L., Vector fields and flows on developable surfaces, Arch. Ration. Mech. Anal., 32 (1) (1969), 29-86. https://doi.org/10.1007/BF00253256
  • Rogers, C., Kingston, J. G. Nondissipative magneto-hydrodynamic flows with magnetic and velocity field lines orthogonal geodesics, SIAM J. Appl. Math., 26 (1) (1974), 183-195. https://doi.org/10.1137/0126015
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik
Bölüm Research Article
Yazarlar

Melek Erdoğdu 0000-0001-9610-6229

Ayşe Yavuz 0000-0002-0469-3786

Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 21 Nisan 2020
Kabul Tarihi 1 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 70 Sayı: 1

Kaynak Göster

APA Erdoğdu, M., & Yavuz, A. (2021). Differential geometric aspects of nonlinear Schrödinger equation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 510-521. https://doi.org/10.31801/cfsuasmas.724634
AMA Erdoğdu M, Yavuz A. Differential geometric aspects of nonlinear Schrödinger equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Haziran 2021;70(1):510-521. doi:10.31801/cfsuasmas.724634
Chicago Erdoğdu, Melek, ve Ayşe Yavuz. “Differential Geometric Aspects of Nonlinear Schrödinger Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, sy. 1 (Haziran 2021): 510-21. https://doi.org/10.31801/cfsuasmas.724634.
EndNote Erdoğdu M, Yavuz A (01 Haziran 2021) Differential geometric aspects of nonlinear Schrödinger equation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 1 510–521.
IEEE M. Erdoğdu ve A. Yavuz, “Differential geometric aspects of nonlinear Schrödinger equation”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 70, sy. 1, ss. 510–521, 2021, doi: 10.31801/cfsuasmas.724634.
ISNAD Erdoğdu, Melek - Yavuz, Ayşe. “Differential Geometric Aspects of Nonlinear Schrödinger Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/1 (Haziran 2021), 510-521. https://doi.org/10.31801/cfsuasmas.724634.
JAMA Erdoğdu M, Yavuz A. Differential geometric aspects of nonlinear Schrödinger equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:510–521.
MLA Erdoğdu, Melek ve Ayşe Yavuz. “Differential Geometric Aspects of Nonlinear Schrödinger Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 70, sy. 1, 2021, ss. 510-21, doi:10.31801/cfsuasmas.724634.
Vancouver Erdoğdu M, Yavuz A. Differential geometric aspects of nonlinear Schrödinger equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(1):510-21.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.