Research Article
BibTex RIS Cite
Year 2021, Volume: 70 Issue: 2, 950 - 964, 31.12.2021
https://doi.org/10.31801/cfsuasmas.772825

Abstract

References

  • Abdeljawad, T., Jarad, F., Alzabut, J., Fractional proportional differences with memory, The European Physical Journal Special Topics, 226 (16-18) (2017), 3333-3354. https://dx.doi.org/10.1140/epjst/e2018-00053-5.
  • Agarwal, R. P., El-Sayed, A. M. A., Salman, S. M., Fractional order Chua's system: discretization, bifurcation and chaos, Adv. Difference Equ., 2013 (320) (2013), 1-13. https://dx.doi.org/10.1186/1687-1847-2013-320.
  • Alzabut, J., Abdeljawad, T., A generalized discrete fractional Gronwall inequality and its application on the uniqueness of solutions for nonlinear delay fractional difference system, Applicable Analysis and Discrete Mathematics, 12 (1) (2018), 36-48, https://dx.doi.org/jstor.org/stable/90020603.
  • Alzabut, J., Tyagi, S., Abbas, S., Discrete fractional-order BAM neural networks with leakage delay: Existence and stability results, Asian Journal of Control, 22 (1) (2018), 143-155. https://dx.doi.org/10.1002/asjc.1918.
  • Caputo, M., Linear models of dissipation whose q is almost frequency independent, Geophys. J. R. Astr. Soc., 13 (5) (1967), 529-539. https://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x.
  • Din. Q., Complexity and chaos control in a discrete-time prey-predator model, Communications in Nonlinear Science and Numerical Simulation, 49 (2017), 113-134. https://dx.doi.org/10.1016/j.cnsns.2017.01.025.
  • El Raheem, Z. F., Salman, S. M., On a discretization process of fractional-order logistic differential equation, J. Egypt. Math. Soc., 2 (2014), 407-412. https://dx.doi.org/10.1016/j.joems.2013.09.001.
  • El-Saka, H. A., Ahmed, E., Shehata, M. I., El-Sayed, A. M. A., On stability, persistence, and hopf bifurcation in fractional order dynamical systems, Nonlinear Dyn., 56 (12) (2019), 121-126. https://dx.doi.org/10.1007/s11071-008-9383-x.
  • Elaydi, S. N., An Introduction to Difference Equations, Springer-Verlag, New York, 2005.
  • Elaydi, S. N., Discrete Chaos: with Applications in Science and Engineering, Chapman and Hall/CRC, Baca Raton, 2008.
  • Elsadany, A. A., Matouk, A. E., Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization, J. Appl. Math. Comput., 49 (2015), 269-283. https://dx.doi.org/10.1007/s12190-014-0838-6.
  • Gumus, O. A., Neimark-Sacker bifurcation and stability of a prey-predator system, Miskolc Mathematical Notes, 21 (2) (2020), 873-885. https://dx.doi.org/10.18514/MMN.2020.3386.
  • Gumus, O. A., Selvam, A. G. M., Janagaraj, R., Stability of modified host-parasitoid model with Allee effect, Applications and Applied Mathematics: An International Journal, 15 (2) (2020), 1032-1045.
  • Gumus, O. A., Yalcin, Y., Stability and hopf bifurcation analysis of delay prey-predator model, Journal of Science and Arts, 20 (2) (2020), 277-282.
  • Guo, Y., The stability of solutions for a fractional predator - prey system, Abstr. Appl. Anal., 2014 (2014), 124-145.
  • Kar, T. K., Chaudhuri, K. S., On non-selective harvesting of two competing fish species in the presence of toxicity, Ecol. Model, 161 (2003), 125-137. https://dx.doi.org/10.1016/S0304-3800(02)00323-X.
  • Li, H. L., Long, Z., Cheng, H., Yao-Lin, J., Zhidong, T., Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2016), 435-449. https://dx.doi.org/10.1007/s12190-016-1017-8.
  • Liu, X., Xiao, D., Complex dynamic behaviors of a discrete-time predator-prey system, Chaos Solitons Fractals, 32 (2007), 80-94. https://dx.doi.org/10.1016/j.chaos.2005.10.081.
  • Makinde, O. D., Solving ratio-dependent predator-prey system with constant effort harvesting using Adomian decomposition method, Appl. Math. Comput., 186 (2007), 17-22. https://dx.doi.org/10.1016/j.amc.2006.07.083.
  • Myerscough, M. R., Gray, B. F., Hogarth, W. L., Norbury, J., An analysis of an ordinary differential equation model for a two-species predator prey system with harvesting and stocking, J. Math. Biol., 30 (1992), 389-411. https://dx.doi.org/10.1007/BF00173294.
  • Selvam, A. G. M., Dhineshbabu, R., Gumus, O. A., Complex dynamics behaviors of a discrete prey-predator-scavenger model with fractional order, Journal of Computational and Theoretical Nanoscience, 17 (5) (2020), 2139-2146. https://dx.doi.org/10.1166/jctn.2020.8860.
  • Selvam, A. G. M., Dhineshbabu, R., Gumus, O. A., Stability and Neimark-Sacker bifurcation for a discrete system of one-scrool chaotic attractor with fractional order, IOP Conf. Series: Journal of Physics: Conf. Series, 1597 (012009) (2020), 1-10. https://dx.doi.org/10.1088/1742-6596/1597/1/012009.
  • Selvam, A. G. M., Dhineshbabu, R., Jacob, S. B., Quadratic harvesting in a fractional order scavenger model, IOP Conf. Series: Journal of Physics: Conf. Series, 1139 (012002) (2018), 1-8. https://dx.doi.org/10.1088/1742-6596/1139/1/012002.
  • Selvam, A. G. M., Janagaraj, R., Jacintha, M., Stability, bifurcation, chaos: discrete prey predator model with step size, International Journal of Innovative Technology and Exploring Engineering, 9 (1) (2019), 3382-3387. https://dx.doi.org/10.35940/ijitee.A4866.119119.
  • Selvam, A. G. M., Janagaraj, R., Vignesh, D., Allee effect and holling type - ii response in a discrete fractional order prey - predator model, IOP Conf. Series: Journal of Physics: Conf. Series, 1139 (012003) (2018), 1-7. https://dx.doi.org/10.1088/1742-6596/1139/1/012003.
  • Sohel Rana, S. M., Bifurcation and complex dynamics of a discrete-time predator - prey system, Computational Ecology and Software, 5 (2) (2015), 187-200.

Discretization and chaos control in a fractional order predator-prey harvesting model

Year 2021, Volume: 70 Issue: 2, 950 - 964, 31.12.2021
https://doi.org/10.31801/cfsuasmas.772825

Abstract

The study of interaction between predator and prey species is one of the important subjects in mathematical biology. Optimal strategy control plays a vital role in preserving animals from extinction. Harvesting of species is a vital issue for the conservation biologists. In this work, we investigate the bifurcation and chaos control of the two species interaction model of fractional order in discrete time with harvesting of both prey and predator species. Existence results and the stability conditions of the system are analyzed using the fixed points and jacobian matrix. The chaotic behavior of the system is discussed with bifurcation diagrams. Linear control and hybrid control methods are used in controlling the chaos of the system. Numerical experiments with different phase portraits are simulated for the better understanding of the qualitative behavior of the considered model.

References

  • Abdeljawad, T., Jarad, F., Alzabut, J., Fractional proportional differences with memory, The European Physical Journal Special Topics, 226 (16-18) (2017), 3333-3354. https://dx.doi.org/10.1140/epjst/e2018-00053-5.
  • Agarwal, R. P., El-Sayed, A. M. A., Salman, S. M., Fractional order Chua's system: discretization, bifurcation and chaos, Adv. Difference Equ., 2013 (320) (2013), 1-13. https://dx.doi.org/10.1186/1687-1847-2013-320.
  • Alzabut, J., Abdeljawad, T., A generalized discrete fractional Gronwall inequality and its application on the uniqueness of solutions for nonlinear delay fractional difference system, Applicable Analysis and Discrete Mathematics, 12 (1) (2018), 36-48, https://dx.doi.org/jstor.org/stable/90020603.
  • Alzabut, J., Tyagi, S., Abbas, S., Discrete fractional-order BAM neural networks with leakage delay: Existence and stability results, Asian Journal of Control, 22 (1) (2018), 143-155. https://dx.doi.org/10.1002/asjc.1918.
  • Caputo, M., Linear models of dissipation whose q is almost frequency independent, Geophys. J. R. Astr. Soc., 13 (5) (1967), 529-539. https://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x.
  • Din. Q., Complexity and chaos control in a discrete-time prey-predator model, Communications in Nonlinear Science and Numerical Simulation, 49 (2017), 113-134. https://dx.doi.org/10.1016/j.cnsns.2017.01.025.
  • El Raheem, Z. F., Salman, S. M., On a discretization process of fractional-order logistic differential equation, J. Egypt. Math. Soc., 2 (2014), 407-412. https://dx.doi.org/10.1016/j.joems.2013.09.001.
  • El-Saka, H. A., Ahmed, E., Shehata, M. I., El-Sayed, A. M. A., On stability, persistence, and hopf bifurcation in fractional order dynamical systems, Nonlinear Dyn., 56 (12) (2019), 121-126. https://dx.doi.org/10.1007/s11071-008-9383-x.
  • Elaydi, S. N., An Introduction to Difference Equations, Springer-Verlag, New York, 2005.
  • Elaydi, S. N., Discrete Chaos: with Applications in Science and Engineering, Chapman and Hall/CRC, Baca Raton, 2008.
  • Elsadany, A. A., Matouk, A. E., Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization, J. Appl. Math. Comput., 49 (2015), 269-283. https://dx.doi.org/10.1007/s12190-014-0838-6.
  • Gumus, O. A., Neimark-Sacker bifurcation and stability of a prey-predator system, Miskolc Mathematical Notes, 21 (2) (2020), 873-885. https://dx.doi.org/10.18514/MMN.2020.3386.
  • Gumus, O. A., Selvam, A. G. M., Janagaraj, R., Stability of modified host-parasitoid model with Allee effect, Applications and Applied Mathematics: An International Journal, 15 (2) (2020), 1032-1045.
  • Gumus, O. A., Yalcin, Y., Stability and hopf bifurcation analysis of delay prey-predator model, Journal of Science and Arts, 20 (2) (2020), 277-282.
  • Guo, Y., The stability of solutions for a fractional predator - prey system, Abstr. Appl. Anal., 2014 (2014), 124-145.
  • Kar, T. K., Chaudhuri, K. S., On non-selective harvesting of two competing fish species in the presence of toxicity, Ecol. Model, 161 (2003), 125-137. https://dx.doi.org/10.1016/S0304-3800(02)00323-X.
  • Li, H. L., Long, Z., Cheng, H., Yao-Lin, J., Zhidong, T., Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2016), 435-449. https://dx.doi.org/10.1007/s12190-016-1017-8.
  • Liu, X., Xiao, D., Complex dynamic behaviors of a discrete-time predator-prey system, Chaos Solitons Fractals, 32 (2007), 80-94. https://dx.doi.org/10.1016/j.chaos.2005.10.081.
  • Makinde, O. D., Solving ratio-dependent predator-prey system with constant effort harvesting using Adomian decomposition method, Appl. Math. Comput., 186 (2007), 17-22. https://dx.doi.org/10.1016/j.amc.2006.07.083.
  • Myerscough, M. R., Gray, B. F., Hogarth, W. L., Norbury, J., An analysis of an ordinary differential equation model for a two-species predator prey system with harvesting and stocking, J. Math. Biol., 30 (1992), 389-411. https://dx.doi.org/10.1007/BF00173294.
  • Selvam, A. G. M., Dhineshbabu, R., Gumus, O. A., Complex dynamics behaviors of a discrete prey-predator-scavenger model with fractional order, Journal of Computational and Theoretical Nanoscience, 17 (5) (2020), 2139-2146. https://dx.doi.org/10.1166/jctn.2020.8860.
  • Selvam, A. G. M., Dhineshbabu, R., Gumus, O. A., Stability and Neimark-Sacker bifurcation for a discrete system of one-scrool chaotic attractor with fractional order, IOP Conf. Series: Journal of Physics: Conf. Series, 1597 (012009) (2020), 1-10. https://dx.doi.org/10.1088/1742-6596/1597/1/012009.
  • Selvam, A. G. M., Dhineshbabu, R., Jacob, S. B., Quadratic harvesting in a fractional order scavenger model, IOP Conf. Series: Journal of Physics: Conf. Series, 1139 (012002) (2018), 1-8. https://dx.doi.org/10.1088/1742-6596/1139/1/012002.
  • Selvam, A. G. M., Janagaraj, R., Jacintha, M., Stability, bifurcation, chaos: discrete prey predator model with step size, International Journal of Innovative Technology and Exploring Engineering, 9 (1) (2019), 3382-3387. https://dx.doi.org/10.35940/ijitee.A4866.119119.
  • Selvam, A. G. M., Janagaraj, R., Vignesh, D., Allee effect and holling type - ii response in a discrete fractional order prey - predator model, IOP Conf. Series: Journal of Physics: Conf. Series, 1139 (012003) (2018), 1-7. https://dx.doi.org/10.1088/1742-6596/1139/1/012003.
  • Sohel Rana, S. M., Bifurcation and complex dynamics of a discrete-time predator - prey system, Computational Ecology and Software, 5 (2) (2015), 187-200.
There are 26 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

George Maria Selvam 0000-0003-2004-3537

Janagaraj Rajendran 0000-0002-9811-078X

Vignesh D 0000-0002-9942-4035

Publication Date December 31, 2021
Submission Date July 23, 2020
Acceptance Date May 10, 2021
Published in Issue Year 2021 Volume: 70 Issue: 2

Cite

APA Selvam, G. M., Rajendran, J., & D, V. (2021). Discretization and chaos control in a fractional order predator-prey harvesting model. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 950-964. https://doi.org/10.31801/cfsuasmas.772825
AMA Selvam GM, Rajendran J, D V. Discretization and chaos control in a fractional order predator-prey harvesting model. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):950-964. doi:10.31801/cfsuasmas.772825
Chicago Selvam, George Maria, Janagaraj Rajendran, and Vignesh D. “Discretization and Chaos Control in a Fractional Order Predator-Prey Harvesting Model”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 950-64. https://doi.org/10.31801/cfsuasmas.772825.
EndNote Selvam GM, Rajendran J, D V (December 1, 2021) Discretization and chaos control in a fractional order predator-prey harvesting model. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 950–964.
IEEE G. M. Selvam, J. Rajendran, and V. D, “Discretization and chaos control in a fractional order predator-prey harvesting model”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 950–964, 2021, doi: 10.31801/cfsuasmas.772825.
ISNAD Selvam, George Maria et al. “Discretization and Chaos Control in a Fractional Order Predator-Prey Harvesting Model”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 950-964. https://doi.org/10.31801/cfsuasmas.772825.
JAMA Selvam GM, Rajendran J, D V. Discretization and chaos control in a fractional order predator-prey harvesting model. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:950–964.
MLA Selvam, George Maria et al. “Discretization and Chaos Control in a Fractional Order Predator-Prey Harvesting Model”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 950-64, doi:10.31801/cfsuasmas.772825.
Vancouver Selvam GM, Rajendran J, D V. Discretization and chaos control in a fractional order predator-prey harvesting model. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):950-64.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.