Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 71 Sayı: 1, 212 - 225, 30.03.2022
https://doi.org/10.31801/cfsuasmas.845845

Öz

Kaynakça

  • Chen, B. Y., When does the position vector of a space curve always lie in its rectifying plane?, The American Mathematical Monthly, 110(2) (2003), 147-152. https://doi.org/10.1080/00029890.2003.11919949
  • Chen, B. Y., Dillen, F., Rectifying curves as centrodes and extremal curves, Bulletin of the Institute of Mathematics Academia Sinica, 33(2) (2005), 77-90.
  • Ilarslan, K., Nesovic, E., Petrovic-Torgasev, M., Some characterizations of rectifying curves in the Minkowski 3-space, Novi Sad Journal of Mathematics, 33(2) (2003), 23-32.
  • Ilarslan, K., Nesovic, E., On rectifying curves as centrodes and extremal curves in the Minkowski 3-space, Novi Sad Journal of Mathematics, 37(1) (2007), 53-64.
  • Ilarslan, K., Nesovic, E., Some characterizations of rectifying curves in the Euclidean space $E^{4}$, Turkish Journal of Mathematics, 32(1) (2008), 21-30.
  • Cambie, S., Goemans, W., Van den Bussche, I., Rectifying curves in the n-dimensional Euclidean space, Turkish Journal of Mathematics, 40(1) (2016), 210-223.
  • Ilarslan, K., Spacelike normal curves in Minkowski space, Turkish Journal of Mathematics $E^{3}_{1}$, 29(1) (2005), 53-63.
  • Ilarslan, K., Nesovic, E., Timelike and null normal curves in Minkowski space $E^{3}_{1}$, Indian Journal of Pure & Applied Mathematics, 35(7) (2004), 881-888.
  • Ilarslan, K., Nesovic, E., Some characterizations of osculating curves in the Euclidean spaces, Demonstratio Mathematica, 41(4) (2008), 931-940. https://doi.org/10.1515/dema-2008-0421
  • Yildiz, O. G., Ozkaldi Karakus, O., On the quaternionic normal curves in the Euclidean space, 2nd International Eurasian Conference on Mathematical Sciences and Applications, (2013), 26-29.
  • Yildiz, O. G., Ozkaldi Karakus, O., On the quaternionic normal curves in the semi-Euclidean space $E^{4}_{2}$ , International Journal of Mathematical Combinatorics, 3 (2016), 68-76. https://doi.org/10.5281/zenodo.825065
  • Ucum, A., Sakaki, M., Ilarslan, K., On osculating, normal and rectifying bi-null curves in $R^{6}_{3}$, Journal of Dynamical Systems and Geometric Theories, 15(1) (2017), 1-13. https://doi.org/10.1080/1726037X.2017.1323415
  • Ilarslan, K., Sakaki, M., Ucum, A., On osculating, normal and rectifying binull curves in $R^{5}_{2}$, Novi Sad Journal of Mathematics, 48(1) (2018), 9-20. https://doi.org/10.30755/NSJOM.05268
  • Ilarslan, K., Kilic, N., Erdem, H. A., Osculating curves in 4-dimensional semi-Euclidean space with index 2, Open Mathematics, 15(1) (2017), 562-567. https://doi.org/10.1515/math-2017- 0050
  • Kulahci, M., Almaz, F., Some characteristics of osculating curves in the lightlike cone, Boletim da Sociedade Paranaense de Matematica, 35(2) (2017), 39-48. https://doi.org/10.5269/bspm.v35i2.26227
  • Bektas, O., Gurses, N., Yuce, S., Quaternionic osculating curves in Euclidean and semi- Euclidean space, Journal of Dynamical Systems and Geometric Theories, 14(1) (2016), 65-84. https://doi.org/10.1080/1726037X.2016.1177935
  • Ilarslan, K., Nesovic, E., Some characterizations of null osculating curves in the Minkowski space-time, Proceedings of the Estonian Academy of Sciences, 61(1) (2012), 1-8. https://doi.org/10.3176/proc.2012.1.01
  • Ilarslan, K., Nesovic, E., The first kind and the second kind osculating curves in Minkowski space-time, Comptes rendus de l’Academie bulgare des Sciences, 62(6) (2009), 677-686.
  • Gluck, H., Higher curvatures of curves in Euclidean space, The American Mathematical Monthly, 73(7) (1966), 699-704. https://doi.org/10.2307/2313974
  • Kuhnel, W., Differential Geometry: Curves-Surfaces-Manifolds, Braunschweig, Wiesbaden, 1999.
  • O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
  • Struik, D. J., Lectures on Classical Differential Geometry, Addison-Wesley Press, Reading, Massachusetts, 1950.
  • Zill, D. G.,Wright, W. S., Differential Equations with Boundary-Value Problems, 8th Edition, Cengage Learning, 2012.
  • Boyce, W. E., DiPrima, R. C., Meade, D. B., Elementary Differential Equations and Boundary Value Problems, Wiley, New York, 1992.
  • Gungor, M. A., Tosun, M., Some characterizations of quaternionic rectifying curves, Differential Geometry - Dynamical Systems, 13 (2011), 89-100.
  • Ucum, A., Kecilioglu, O., Ilaslan, K., Generalized Bertrand curves with timelike (1,3)-normal plane in Minkowski space-time, Kuwait Journal of Science, 42(3) (2015), 10-27.
  • Ilarslan, K., Nesovic, E., Tensor product surfaces of a Lorentzian space curve and a Euclidean plane curve, Kuwait Journal of Science and Engineering, 34(2A) (2007), 41-55.

Generalized osculating curves of type (n-3) in the n-dimensional Euclidean space

Yıl 2022, Cilt: 71 Sayı: 1, 212 - 225, 30.03.2022
https://doi.org/10.31801/cfsuasmas.845845

Öz

In this paper, we give a generalization of the osculating curves to the $n$-dimensional Euclidean space. Based on the definition of an osculating curve in the 3 and 4 dimensional Euclidean spaces, a new type of osculating curve has been defined such that the curve is independent of the (n3)(n−3)th binormal vector in the n-dimensional Euclidean space, which has been called ”a generalized osculating curve of type (n3)(n−3)”. We find the relationship between the curvatures for any unit speed curve to be congruent to this osculating curve in EnEn. In particular, we characterize the osculating curves in EnEn in terms of their curvature functions. Finally, we show that the ratio of the (n1)(n−1)th and (n2)(n−2)th curvatures of the osculating curve is the solution of an (n2)(n−2)th order linear nonhomogeneous differential equation.

Kaynakça

  • Chen, B. Y., When does the position vector of a space curve always lie in its rectifying plane?, The American Mathematical Monthly, 110(2) (2003), 147-152. https://doi.org/10.1080/00029890.2003.11919949
  • Chen, B. Y., Dillen, F., Rectifying curves as centrodes and extremal curves, Bulletin of the Institute of Mathematics Academia Sinica, 33(2) (2005), 77-90.
  • Ilarslan, K., Nesovic, E., Petrovic-Torgasev, M., Some characterizations of rectifying curves in the Minkowski 3-space, Novi Sad Journal of Mathematics, 33(2) (2003), 23-32.
  • Ilarslan, K., Nesovic, E., On rectifying curves as centrodes and extremal curves in the Minkowski 3-space, Novi Sad Journal of Mathematics, 37(1) (2007), 53-64.
  • Ilarslan, K., Nesovic, E., Some characterizations of rectifying curves in the Euclidean space $E^{4}$, Turkish Journal of Mathematics, 32(1) (2008), 21-30.
  • Cambie, S., Goemans, W., Van den Bussche, I., Rectifying curves in the n-dimensional Euclidean space, Turkish Journal of Mathematics, 40(1) (2016), 210-223.
  • Ilarslan, K., Spacelike normal curves in Minkowski space, Turkish Journal of Mathematics $E^{3}_{1}$, 29(1) (2005), 53-63.
  • Ilarslan, K., Nesovic, E., Timelike and null normal curves in Minkowski space $E^{3}_{1}$, Indian Journal of Pure & Applied Mathematics, 35(7) (2004), 881-888.
  • Ilarslan, K., Nesovic, E., Some characterizations of osculating curves in the Euclidean spaces, Demonstratio Mathematica, 41(4) (2008), 931-940. https://doi.org/10.1515/dema-2008-0421
  • Yildiz, O. G., Ozkaldi Karakus, O., On the quaternionic normal curves in the Euclidean space, 2nd International Eurasian Conference on Mathematical Sciences and Applications, (2013), 26-29.
  • Yildiz, O. G., Ozkaldi Karakus, O., On the quaternionic normal curves in the semi-Euclidean space $E^{4}_{2}$ , International Journal of Mathematical Combinatorics, 3 (2016), 68-76. https://doi.org/10.5281/zenodo.825065
  • Ucum, A., Sakaki, M., Ilarslan, K., On osculating, normal and rectifying bi-null curves in $R^{6}_{3}$, Journal of Dynamical Systems and Geometric Theories, 15(1) (2017), 1-13. https://doi.org/10.1080/1726037X.2017.1323415
  • Ilarslan, K., Sakaki, M., Ucum, A., On osculating, normal and rectifying binull curves in $R^{5}_{2}$, Novi Sad Journal of Mathematics, 48(1) (2018), 9-20. https://doi.org/10.30755/NSJOM.05268
  • Ilarslan, K., Kilic, N., Erdem, H. A., Osculating curves in 4-dimensional semi-Euclidean space with index 2, Open Mathematics, 15(1) (2017), 562-567. https://doi.org/10.1515/math-2017- 0050
  • Kulahci, M., Almaz, F., Some characteristics of osculating curves in the lightlike cone, Boletim da Sociedade Paranaense de Matematica, 35(2) (2017), 39-48. https://doi.org/10.5269/bspm.v35i2.26227
  • Bektas, O., Gurses, N., Yuce, S., Quaternionic osculating curves in Euclidean and semi- Euclidean space, Journal of Dynamical Systems and Geometric Theories, 14(1) (2016), 65-84. https://doi.org/10.1080/1726037X.2016.1177935
  • Ilarslan, K., Nesovic, E., Some characterizations of null osculating curves in the Minkowski space-time, Proceedings of the Estonian Academy of Sciences, 61(1) (2012), 1-8. https://doi.org/10.3176/proc.2012.1.01
  • Ilarslan, K., Nesovic, E., The first kind and the second kind osculating curves in Minkowski space-time, Comptes rendus de l’Academie bulgare des Sciences, 62(6) (2009), 677-686.
  • Gluck, H., Higher curvatures of curves in Euclidean space, The American Mathematical Monthly, 73(7) (1966), 699-704. https://doi.org/10.2307/2313974
  • Kuhnel, W., Differential Geometry: Curves-Surfaces-Manifolds, Braunschweig, Wiesbaden, 1999.
  • O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
  • Struik, D. J., Lectures on Classical Differential Geometry, Addison-Wesley Press, Reading, Massachusetts, 1950.
  • Zill, D. G.,Wright, W. S., Differential Equations with Boundary-Value Problems, 8th Edition, Cengage Learning, 2012.
  • Boyce, W. E., DiPrima, R. C., Meade, D. B., Elementary Differential Equations and Boundary Value Problems, Wiley, New York, 1992.
  • Gungor, M. A., Tosun, M., Some characterizations of quaternionic rectifying curves, Differential Geometry - Dynamical Systems, 13 (2011), 89-100.
  • Ucum, A., Kecilioglu, O., Ilaslan, K., Generalized Bertrand curves with timelike (1,3)-normal plane in Minkowski space-time, Kuwait Journal of Science, 42(3) (2015), 10-27.
  • Ilarslan, K., Nesovic, E., Tensor product surfaces of a Lorentzian space curve and a Euclidean plane curve, Kuwait Journal of Science and Engineering, 34(2A) (2007), 41-55.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Research Article
Yazarlar

Özcan Bektaş 0000-0002-2483-1939

Zafer Bekiryazıcı 0000-0001-5671-9995

Yayımlanma Tarihi 30 Mart 2022
Gönderilme Tarihi 23 Aralık 2020
Kabul Tarihi 18 Ağustos 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 71 Sayı: 1

Kaynak Göster

APA Bektaş, Ö., & Bekiryazıcı, Z. (2022). Generalized osculating curves of type (n-3) in the n-dimensional Euclidean space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 212-225. https://doi.org/10.31801/cfsuasmas.845845
AMA Bektaş Ö, Bekiryazıcı Z. Generalized osculating curves of type (n-3) in the n-dimensional Euclidean space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Mart 2022;71(1):212-225. doi:10.31801/cfsuasmas.845845
Chicago Bektaş, Özcan, ve Zafer Bekiryazıcı. “Generalized Osculating Curves of Type (n-3) in the N-Dimensional Euclidean Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, sy. 1 (Mart 2022): 212-25. https://doi.org/10.31801/cfsuasmas.845845.
EndNote Bektaş Ö, Bekiryazıcı Z (01 Mart 2022) Generalized osculating curves of type (n-3) in the n-dimensional Euclidean space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 1 212–225.
IEEE Ö. Bektaş ve Z. Bekiryazıcı, “Generalized osculating curves of type (n-3) in the n-dimensional Euclidean space”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 71, sy. 1, ss. 212–225, 2022, doi: 10.31801/cfsuasmas.845845.
ISNAD Bektaş, Özcan - Bekiryazıcı, Zafer. “Generalized Osculating Curves of Type (n-3) in the N-Dimensional Euclidean Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/1 (Mart 2022), 212-225. https://doi.org/10.31801/cfsuasmas.845845.
JAMA Bektaş Ö, Bekiryazıcı Z. Generalized osculating curves of type (n-3) in the n-dimensional Euclidean space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:212–225.
MLA Bektaş, Özcan ve Zafer Bekiryazıcı. “Generalized Osculating Curves of Type (n-3) in the N-Dimensional Euclidean Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 71, sy. 1, 2022, ss. 212-25, doi:10.31801/cfsuasmas.845845.
Vancouver Bektaş Ö, Bekiryazıcı Z. Generalized osculating curves of type (n-3) in the n-dimensional Euclidean space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(1):212-25.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.