Research Article
BibTex RIS Cite
Year 2022, Volume: 71 Issue: 1, 1 - 12, 30.03.2022
https://doi.org/10.31801/cfsuasmas.903988

Abstract

References

  • Pringsheim, A., Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(3) (1900), 289–321. https://doi.org/10.1007/BF01448977
  • Moricz, F., Statistical convergence of multiple sequences, Arc. Math, 81(1) (2003), 82–89. https://doi.org/10.1007/s00013-003-0506-9
  • Mursaleen, M., Edely, O. H. H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1) (2003), 223–231. https://doi.org/10.1016/j.jmaa.2003.08.004
  • Patterson, R. F., Savaş, E., Lacunary statistical convergence of double sequences, Math. Commun. 10(1) (2005), 55–61.
  • Savaş, E., Patterson, R. F., Double σ-convergence lacunary statistical sequences, J. Comput. Anal. Appl., 11(4) (2009), 610–615.
  • Patterson, R. F., Rates of convergence for double sequences, Southeast Asian Bull. Math., 26(3) (2003), 469–478. https://doi.org/10.1007/s10012-002-0469-y
  • Wijsman, R. A., Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc., 70(1) (1964), 186–188. https://doi.org/10.1090/S0002-9904-1964-11072-7
  • Baronti, M., Papini, P., Convergence of Sequences of Sets, In: Methods of Functional Analysis in Approximation Theory (pp. 133–155), Birkh¨auser, Basel, 1986.
  • Nuray, F., Rhoades, B. E., Statistical convergence of sequences of sets, Fasc. Math., 49(2) (2012), 87–99. https://doi.org/10.3968/j.pam.1925252820120402.2264
  • Beer, G., Wijsman convergence: A survey, Set-Valued Anal., 2(1) (1994), 77–94. https://doi.org/10.1007/BF01027094
  • Nuray, F., Ulusu, U., Dündar, E., Lacunary statistical convergence of double sequences of sets, Soft Comput., 20(7) (2016), 2883–2888. https://doi.org/10.1007/s00500-015-1691-8
  • Nuray, F., Ulusu, U., Lacunary invariant statistical convergence of double sequences of sets, Creat. Math. Inform., 28(2) (2019), 143–150. https://doi.org/10.37193/CMI.2019.02.06
  • Nuray, F., Dündar, E., Ulusu, U., Wijsman statistical convergence of double sequences of sets, Iran. J. Math. Sci. Inform., 16(1) (2021), 55–64. https://doi.org/10.29252/ijmsi.16.1.55
  • Nuray, F., Patterson, R. F., Dündar, E., Asymptotically lacunary statistical equivalence of double sequences of sets, Demonstratio Math., 49(2) (2016), 183–196. https://doi.org/10.1515/dema-2016-0016
  • Ulusu, U., Dündar, E., Asymptotically I2-lacunary statistical equivalence of double sequences of sets, J. Ineq. Spec. Funct., 7(2) (2016), 44–56.
  • Ulusu, U., Gülle, E., Wijsman asymptotical I2-statistically equivalent double set sequences of order η, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1) (2020), 854–862. https://doi.org/10.31801/cfsuasmas.695309
  • Gülle, E., Ulusu, U., Wijsman asymptotical I2-lacunary statistically equivalence of order η for double set sequences, J. Appl. Math. Inform., (in press) (2021).
  • Pancaroğlu, N., Nuray, F., Savaş, E., On asymptotically lacunary invariant statistical equivalent set sequences, AIP Conf. Proc., 1558(1) (2013), 780–781. https://doi.org/10.1063/1.4825609
  • Ulusu, U., Nuray, F., On asymptotically lacunary statistical equivalent set sequences, J. Math., 2013(Article ID 310438) (2013), 5 pages. https://doi.org/10.1155/2013/310438

Lacunary invariant statistical equivalence for double set sequences

Year 2022, Volume: 71 Issue: 1, 1 - 12, 30.03.2022
https://doi.org/10.31801/cfsuasmas.903988

Abstract

In this paper, we introduce the notions of asymptotical strong σ2σ2-equivalence, asymptotical σ2σ2-statistical equivalence, asymptotical lacunary strong σ2σ2-equivalence and asymptotical lacunary σ2σ2-statistical equivalence in the Wijsman sense for double set sequences. Also, we investigate some relations between these new asymptotical equivalence notions.

References

  • Pringsheim, A., Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(3) (1900), 289–321. https://doi.org/10.1007/BF01448977
  • Moricz, F., Statistical convergence of multiple sequences, Arc. Math, 81(1) (2003), 82–89. https://doi.org/10.1007/s00013-003-0506-9
  • Mursaleen, M., Edely, O. H. H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1) (2003), 223–231. https://doi.org/10.1016/j.jmaa.2003.08.004
  • Patterson, R. F., Savaş, E., Lacunary statistical convergence of double sequences, Math. Commun. 10(1) (2005), 55–61.
  • Savaş, E., Patterson, R. F., Double σ-convergence lacunary statistical sequences, J. Comput. Anal. Appl., 11(4) (2009), 610–615.
  • Patterson, R. F., Rates of convergence for double sequences, Southeast Asian Bull. Math., 26(3) (2003), 469–478. https://doi.org/10.1007/s10012-002-0469-y
  • Wijsman, R. A., Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc., 70(1) (1964), 186–188. https://doi.org/10.1090/S0002-9904-1964-11072-7
  • Baronti, M., Papini, P., Convergence of Sequences of Sets, In: Methods of Functional Analysis in Approximation Theory (pp. 133–155), Birkh¨auser, Basel, 1986.
  • Nuray, F., Rhoades, B. E., Statistical convergence of sequences of sets, Fasc. Math., 49(2) (2012), 87–99. https://doi.org/10.3968/j.pam.1925252820120402.2264
  • Beer, G., Wijsman convergence: A survey, Set-Valued Anal., 2(1) (1994), 77–94. https://doi.org/10.1007/BF01027094
  • Nuray, F., Ulusu, U., Dündar, E., Lacunary statistical convergence of double sequences of sets, Soft Comput., 20(7) (2016), 2883–2888. https://doi.org/10.1007/s00500-015-1691-8
  • Nuray, F., Ulusu, U., Lacunary invariant statistical convergence of double sequences of sets, Creat. Math. Inform., 28(2) (2019), 143–150. https://doi.org/10.37193/CMI.2019.02.06
  • Nuray, F., Dündar, E., Ulusu, U., Wijsman statistical convergence of double sequences of sets, Iran. J. Math. Sci. Inform., 16(1) (2021), 55–64. https://doi.org/10.29252/ijmsi.16.1.55
  • Nuray, F., Patterson, R. F., Dündar, E., Asymptotically lacunary statistical equivalence of double sequences of sets, Demonstratio Math., 49(2) (2016), 183–196. https://doi.org/10.1515/dema-2016-0016
  • Ulusu, U., Dündar, E., Asymptotically I2-lacunary statistical equivalence of double sequences of sets, J. Ineq. Spec. Funct., 7(2) (2016), 44–56.
  • Ulusu, U., Gülle, E., Wijsman asymptotical I2-statistically equivalent double set sequences of order η, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1) (2020), 854–862. https://doi.org/10.31801/cfsuasmas.695309
  • Gülle, E., Ulusu, U., Wijsman asymptotical I2-lacunary statistically equivalence of order η for double set sequences, J. Appl. Math. Inform., (in press) (2021).
  • Pancaroğlu, N., Nuray, F., Savaş, E., On asymptotically lacunary invariant statistical equivalent set sequences, AIP Conf. Proc., 1558(1) (2013), 780–781. https://doi.org/10.1063/1.4825609
  • Ulusu, U., Nuray, F., On asymptotically lacunary statistical equivalent set sequences, J. Math., 2013(Article ID 310438) (2013), 5 pages. https://doi.org/10.1155/2013/310438
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Uğur Ulusu 0000-0001-7658-6114

Erdinç Dündar 0000-0002-0545-7486

Nimet Pancaroğlu Akın 0000-0003-2886-3679

Publication Date March 30, 2022
Submission Date March 26, 2021
Acceptance Date June 1, 2021
Published in Issue Year 2022 Volume: 71 Issue: 1

Cite

APA Ulusu, U., Dündar, E., & Pancaroğlu Akın, N. (2022). Lacunary invariant statistical equivalence for double set sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 1-12. https://doi.org/10.31801/cfsuasmas.903988
AMA Ulusu U, Dündar E, Pancaroğlu Akın N. Lacunary invariant statistical equivalence for double set sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2022;71(1):1-12. doi:10.31801/cfsuasmas.903988
Chicago Ulusu, Uğur, Erdinç Dündar, and Nimet Pancaroğlu Akın. “Lacunary Invariant Statistical Equivalence for Double Set Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 1 (March 2022): 1-12. https://doi.org/10.31801/cfsuasmas.903988.
EndNote Ulusu U, Dündar E, Pancaroğlu Akın N (March 1, 2022) Lacunary invariant statistical equivalence for double set sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 1 1–12.
IEEE U. Ulusu, E. Dündar, and N. Pancaroğlu Akın, “Lacunary invariant statistical equivalence for double set sequences”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 1, pp. 1–12, 2022, doi: 10.31801/cfsuasmas.903988.
ISNAD Ulusu, Uğur et al. “Lacunary Invariant Statistical Equivalence for Double Set Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/1 (March 2022), 1-12. https://doi.org/10.31801/cfsuasmas.903988.
JAMA Ulusu U, Dündar E, Pancaroğlu Akın N. Lacunary invariant statistical equivalence for double set sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:1–12.
MLA Ulusu, Uğur et al. “Lacunary Invariant Statistical Equivalence for Double Set Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 1, 2022, pp. 1-12, doi:10.31801/cfsuasmas.903988.
Vancouver Ulusu U, Dündar E, Pancaroğlu Akın N. Lacunary invariant statistical equivalence for double set sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(1):1-12.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.