Split-complex (hyperbolic) numbers are ordered pairs of real numbers, written in the form $x+jy$ with $j^{2}=-1$, used to describe the geometry of the Lorentzian plane. Since a null split-complex number does not have an inverse, some methods to calculate the exponential of complex matrices are not valid for split-complex matrices. In this paper, we examined the exponential of a $2x2$ split-complex matrix in three cases : $i:~\Delta=0,~ii:~\Delta\neq0$ and $\Delta$ is not null split-complex number, $iii:~\Delta\neq0$ and $\Delta$ is a null split-complex number where $\Delta=(trA)^{2}-4detA$.
Birincil Dil | İngilizce |
---|---|
Konular | Uygulamalı Matematik |
Bölüm | Research Article |
Yazarlar | |
Yayımlanma Tarihi | 30 Haziran 2022 |
Gönderilme Tarihi | 6 Eylül 2021 |
Kabul Tarihi | 18 Ocak 2022 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 71 Sayı: 2 |
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.
This work is licensed under a Creative Commons Attribution 4.0 International License.