Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 71 Sayı: 3, 806 - 825, 30.09.2022
https://doi.org/10.31801/cfsuasmas.1004300

Öz

Kaynakça

  • Agarwal, P., Vivas-Cortez, M., Rangel-Oliveros, Y., Ali, M. A., New Ostrowski type inequalities for generalized s-convex functions with applications to some special means of real numbers and to midpoint formula, AIMS Mathematics, 7(1) (2022), 1429–1444. doi:10.3934/math.2022084
  • Ali, M. A., Budak, H., Zhang, Z., Yildirim, H., Some new Simpson’s type inequalities for co-ordinated convex functions in quantum calculus, Math. Methods Appl. Sci., 44(6) (2021), 4515–4540 https://doi.org/10.1002/mma.7048
  • Ali, M. A., Budak, H., Abbas, M., Chu, Y.-M., Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qκ2 -derivatives, Adv. Difference Equ., 2021(7) (2021). https://doi.org/10.1186/s13662-020-03163-1
  • Ali, M. A., Chu, Y. M., Budak, H., Akkurt, A., Yildirim, H., New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions, Adv. Difference Equ., 2021(64) (2021). https://doi.org/10.1186/s13662-021-03226-x
  • Ali, M. A., Abbas, M., Budak, H., Agarwal, P., Murtaza, G., Chu, Y.-M., Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Difference Equ., 2021(25) (2021). https://doi.org/10.1186/s13662-020-03195-7
  • Alomari, M., Darus, M., Dragomir, S. S., New inequalities of Simpson’s type for s-convex functions with applications, RGMIA Res. Rep. Coll., 12(4) (2009).
  • Budak, H., Erden, S., Ali, M. A., Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Methods Appl. Sci., 44(1) (2021), 378–390 https://doi.org/10.1002/mma.6742.
  • Budak, H., Kara, H., Kapucu, R., New midpoint type inequalities for generalized fractional integral, Comput. Methods Differ. Equ., 10(1) (2022), 93–108. DOI:10.22034/cmde.2020.40684.1772
  • Budak, H., Pehlivan E., Kösem, P., On new extensions of Hermite-Hadamard inequalities for generalized fractional integrals, Sahand Communications in Mathematical Analysis, 18(1) (2021), 73–88.
  • Budak, H., Hezenci, F., Kara, H., On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals, Math. Methods Appl. Sci., 44(17) (2021), 12522–12536. DOI: 10.1002/mma.7558
  • Butt, S. I., Akdemir, A. O., Agarwal, P., Baleanu, D., Non-conformable integral inequalitiesof Chebyshev-Polya-Szego type, J. Math. Inequal., 15(4) (2021), 1391–1400. dx.doi.org/10.7153/jmi-2021-15-94
  • Butt, S. I., Agarwal, P., Yousaf, S. Guirao, J. L., Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications, J. Inequal. Appl., 2022(1) (2022), 1-18. https://doi.org/10.1186/s13660-021-02735-3
  • Butt, S. I., Akdemir, A. O., Nadeem, M., Raza, M. A., Gruss type inequalities via generalized fractional operators Math. Methods Appl. Sci., 44(17) (2021), 12559–12574. https://doi.org/10.1002/mma.7563
  • Butt, S. I., Yousaf, S., Akdemir, A. O., Dokuyucu, M. A., New Hadamard-type integral inequalities via a general form of fractional integral operators, Chaos Solitons Fractals, 148 (2021), 111025. https://doi.org/10.1016/j.chaos.2021.111025
  • Butt, S. I., Nadeem, M., Tariq, M., Aslam, A., New integral type inequalities via Rainaconvex functions and its applications Commun. Fac. Sci. Univ. Ank. S´er. A1 Math. Stat., 70(2) (2021), 1011-1035. https://doi.org/10.31801/cfsuasmas.848853
  • Dragomir, S. S., Agarwal, R. P., Cerone, P., On Simpson’s inequality and applications, J. Inequal. Appl., 5 (2000), 533–579.
  • Du, T., Li, Y., Yang, Z., A generalization of Simpson’s inequality via differentiable mapping using extended (s,m)-convex functions, Appl. Math. Comput., 293 (2017), 358–369. https://doi.org/10.1016/j.amc.2016.08.045
  • Erden, S., Iftikhar, S., Delavar, R. M., Kumam, P., Thounthong P., Kumam, W., On generalizations of some inequalities for convex functions via quantum integrals, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 114(3) (2020), 1–15. Doi: 10.1007/s13398-020-00841-3.
  • Ertugral, F., Sarikaya, M. Z., Simpson type integral inequalities for generalized fractional integral, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 113(4) (2019), 3115–3124. https://doi.org/10.1007/s13398-019-00680-x
  • Farid, G., Rehman, A., Zahra, M., On Hadamard inequalities for k-fractional integrals, Nonlinear Funct. Anal. Appl., 21(3) (2016), 463–478.
  • Gorenflo, R., Mainardi, F., Fractional Calculus: Integral and Differential Equations of Fractional Order, Wien: Springer-Verlag, 1997, 223–276.
  • Hadamard, J., Etude sur les proprietes des fonctions entieres et en particulier d’une fonction considree par, Riemann, J. Math. Pures. et Appl., 58 (1893), 171–215.
  • Hai, X., Wang S. H., Simpson type inequalities for convex function based on the generalized fractional integrals, Turkish J. Math., 5(1) (2021), 1–15.
  • Han, J., Mohammed, P. O., Zeng, H., Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18(1) (2020), 794–806. https://doi.org/10.1515/math-2020-0038
  • Iftikhar, S., Komam, P., Erden, S., Newton’s type integral inequalities via local fractional integrals, Fractals, 28(3) (2020), 2050037, 13 pages. Doi: 10.1142/S0218348X20500371.
  • Jain, S., Goyal, R., Agarwal, P., Guirao, J. L., Some inequalities of extended hypergeometric functions, Mathematics, 9(21) (2021), 2702. https://doi.org/10.3390/math9212702
  • Katugampola, U. N., A new fractional derivative with classical properties, (2014) e-print arXiv:1410.6535.
  • Kashuri, A., Ali, M. A., Abbas M., Budak, H., New inequalities for generalized m-convex functions via generalized fractional integral operators and their applications, International Journal of Nonlinear Analysis and Applications, 10(2) (2019), 275-299. doi: 10.22075/ijnaa. 2019.18455.2014
  • Kashuri, A., Liko, R., On Fej´er type inequalities for convex mappings utilizing generalized fractional integrals, Appl. Appl. Math., 15(1) (2020), 240–255.
  • Khalil, R., Alomari, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002
  • Miller, S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, New York, Wiley, 1993.
  • Mohammed, P. O., Sarikaya, M. Z., On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740. https://doi.org/10.1016/j.cam.2020.112740
  • Mubeen, S., Habibullah, G. M., k-Fractional integrals and application, Int. J. Contemp. Math. Sciences, 7(2) (2012), 89–94.
  • Noor, M. A., Noor, K. I., Iftikhar, S., Some Newton’s type inequalities for harmonic convex functions, J. Adv. Math. Stud., 9(1) (2016), 07–16.
  • Noor, M. A., Noor K. I., Iftikhar, S., Newton inequalities for p-harmonic convex functions, Honam Math. J., 40(2) (2018), 239–250. https://doi.org/10.5831/HMJ.2018.40.2.239
  • Park, J., On Simpson-like type integral inequalities for differentiable preinvex functions, Appl. Math. Sci., 7(121) (2013), 6009–6021. http://dx.doi.org/10.12988/ams.2013.39498
  • Podlubni, I., Fractional Differential Equations, San Diego, CA: Academic Press, 1999.
  • Sarikaya, M. Z., Set, E., Yaldiz, H., Basak, N., Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57(9–10) (2013), 2403– 2407. https://doi.org/10.1016/j.mcm.2011.12.048
  • Sarikaya, M. Z., Akkurt, A., Budak, H., Yildirim, M. E., Yildirim, H., Hermite-Hadamard’s inequalities for conformable fractional integrals, Konuralp Journal of Mathematics, 8(2) (2020), 376-383.
  • Sarikaya, M. Z., Ogunmez, H., On new inequalities via Riemann–Liouville fractional integration, Abs. Appl. Anal. 2012. Article ID 428983, 10 pages. doi:10.1155/2012/428983.
  • Sarikaya, M. Z., Ertugral, F., On the generalized Hermite-Hadamard inequalities, An. Univ. Craiova Ser. Mat. Inform., 47(1) (2020), 193–213.
  • Sarikaya, M. Z., Set, E., Özdemir, M. E., On new inequalities of Simpson’s type for convex functions, RGMIA Res. Rep. Coll., 13(2) (2010), Article2.
  • Sarikaya, M. Z., Set, E., Özdemir, M. E., On new inequalities of Simpson’s type for s-convex functions, Comput. Math. Appl., 60(8) (2020), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033
  • Set, E., Butt, S. I., Akdemir, A. O., Karaoglan, A., Abdeljawad, T., New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators, Chaos Solitons Fractals, 143 (2021), 110554. https://doi.org/10.1016/j.chaos.2020.110554
  • Turkay, M. E., Sarikaya, M. Z., Budak, H., Yildirim, H., Some Hermite-Hadamard type inequalities for co-ordinated convex functions via generalized fractional integrals, Submitted, ResearchGate Article: https://www.researchgate.net/publication/321803898.
  • Qi, F., Mohammed, P. O., Yao, J.-C., Yao, Y.-H., Generalized fractional integral inequalities of Hermite–Hadamard type for (α,m)-convex functions, J. Inequal. Appl. 2019, 135 (2019). https://doi.org/10.1186/s13660-019-2079-6
  • Vivas-Cortez, M., Ali, M. A., Kashuri, A., Sial, I. B., Zhang, Z., Some new Newton’s type integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry, 12(9) (2020) 1476; https://doi.org/10.3390/sym12091476.
  • Zhao, D., Ali, M. A., Kashuri, A., Budak, H., Sarikaya, M. Z., Hermite–Hadamard-type inequalities for the interval-valued approximately h−convex functions via generalized fractional integrals, J. Inequal. Appl., 2020(222) (2020), 1–38. https://doi.org/10.1186/s13660-020-02488-5

On inequalities of Simpson's type for convex functions via generalized fractional integrals

Yıl 2022, Cilt: 71 Sayı: 3, 806 - 825, 30.09.2022
https://doi.org/10.31801/cfsuasmas.1004300

Öz

Fractional calculus and applications have application areas in many different fields such as physics, chemistry, and engineering as well as mathematics. The application of arithmetic carried out in classical analysis in fractional analysis is very important in terms of obtaining more realistic results in the solution of many problems. In this study, we prove an identity involving generalized fractional integrals by using differentiable functions. By utilizing this identity, we obtain several Simpson’s type inequalities for the functions whose derivatives in absolute value are convex. Finally, we present some new results as the special cases of our main results.

Kaynakça

  • Agarwal, P., Vivas-Cortez, M., Rangel-Oliveros, Y., Ali, M. A., New Ostrowski type inequalities for generalized s-convex functions with applications to some special means of real numbers and to midpoint formula, AIMS Mathematics, 7(1) (2022), 1429–1444. doi:10.3934/math.2022084
  • Ali, M. A., Budak, H., Zhang, Z., Yildirim, H., Some new Simpson’s type inequalities for co-ordinated convex functions in quantum calculus, Math. Methods Appl. Sci., 44(6) (2021), 4515–4540 https://doi.org/10.1002/mma.7048
  • Ali, M. A., Budak, H., Abbas, M., Chu, Y.-M., Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qκ2 -derivatives, Adv. Difference Equ., 2021(7) (2021). https://doi.org/10.1186/s13662-020-03163-1
  • Ali, M. A., Chu, Y. M., Budak, H., Akkurt, A., Yildirim, H., New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions, Adv. Difference Equ., 2021(64) (2021). https://doi.org/10.1186/s13662-021-03226-x
  • Ali, M. A., Abbas, M., Budak, H., Agarwal, P., Murtaza, G., Chu, Y.-M., Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Difference Equ., 2021(25) (2021). https://doi.org/10.1186/s13662-020-03195-7
  • Alomari, M., Darus, M., Dragomir, S. S., New inequalities of Simpson’s type for s-convex functions with applications, RGMIA Res. Rep. Coll., 12(4) (2009).
  • Budak, H., Erden, S., Ali, M. A., Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Methods Appl. Sci., 44(1) (2021), 378–390 https://doi.org/10.1002/mma.6742.
  • Budak, H., Kara, H., Kapucu, R., New midpoint type inequalities for generalized fractional integral, Comput. Methods Differ. Equ., 10(1) (2022), 93–108. DOI:10.22034/cmde.2020.40684.1772
  • Budak, H., Pehlivan E., Kösem, P., On new extensions of Hermite-Hadamard inequalities for generalized fractional integrals, Sahand Communications in Mathematical Analysis, 18(1) (2021), 73–88.
  • Budak, H., Hezenci, F., Kara, H., On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals, Math. Methods Appl. Sci., 44(17) (2021), 12522–12536. DOI: 10.1002/mma.7558
  • Butt, S. I., Akdemir, A. O., Agarwal, P., Baleanu, D., Non-conformable integral inequalitiesof Chebyshev-Polya-Szego type, J. Math. Inequal., 15(4) (2021), 1391–1400. dx.doi.org/10.7153/jmi-2021-15-94
  • Butt, S. I., Agarwal, P., Yousaf, S. Guirao, J. L., Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications, J. Inequal. Appl., 2022(1) (2022), 1-18. https://doi.org/10.1186/s13660-021-02735-3
  • Butt, S. I., Akdemir, A. O., Nadeem, M., Raza, M. A., Gruss type inequalities via generalized fractional operators Math. Methods Appl. Sci., 44(17) (2021), 12559–12574. https://doi.org/10.1002/mma.7563
  • Butt, S. I., Yousaf, S., Akdemir, A. O., Dokuyucu, M. A., New Hadamard-type integral inequalities via a general form of fractional integral operators, Chaos Solitons Fractals, 148 (2021), 111025. https://doi.org/10.1016/j.chaos.2021.111025
  • Butt, S. I., Nadeem, M., Tariq, M., Aslam, A., New integral type inequalities via Rainaconvex functions and its applications Commun. Fac. Sci. Univ. Ank. S´er. A1 Math. Stat., 70(2) (2021), 1011-1035. https://doi.org/10.31801/cfsuasmas.848853
  • Dragomir, S. S., Agarwal, R. P., Cerone, P., On Simpson’s inequality and applications, J. Inequal. Appl., 5 (2000), 533–579.
  • Du, T., Li, Y., Yang, Z., A generalization of Simpson’s inequality via differentiable mapping using extended (s,m)-convex functions, Appl. Math. Comput., 293 (2017), 358–369. https://doi.org/10.1016/j.amc.2016.08.045
  • Erden, S., Iftikhar, S., Delavar, R. M., Kumam, P., Thounthong P., Kumam, W., On generalizations of some inequalities for convex functions via quantum integrals, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 114(3) (2020), 1–15. Doi: 10.1007/s13398-020-00841-3.
  • Ertugral, F., Sarikaya, M. Z., Simpson type integral inequalities for generalized fractional integral, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 113(4) (2019), 3115–3124. https://doi.org/10.1007/s13398-019-00680-x
  • Farid, G., Rehman, A., Zahra, M., On Hadamard inequalities for k-fractional integrals, Nonlinear Funct. Anal. Appl., 21(3) (2016), 463–478.
  • Gorenflo, R., Mainardi, F., Fractional Calculus: Integral and Differential Equations of Fractional Order, Wien: Springer-Verlag, 1997, 223–276.
  • Hadamard, J., Etude sur les proprietes des fonctions entieres et en particulier d’une fonction considree par, Riemann, J. Math. Pures. et Appl., 58 (1893), 171–215.
  • Hai, X., Wang S. H., Simpson type inequalities for convex function based on the generalized fractional integrals, Turkish J. Math., 5(1) (2021), 1–15.
  • Han, J., Mohammed, P. O., Zeng, H., Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18(1) (2020), 794–806. https://doi.org/10.1515/math-2020-0038
  • Iftikhar, S., Komam, P., Erden, S., Newton’s type integral inequalities via local fractional integrals, Fractals, 28(3) (2020), 2050037, 13 pages. Doi: 10.1142/S0218348X20500371.
  • Jain, S., Goyal, R., Agarwal, P., Guirao, J. L., Some inequalities of extended hypergeometric functions, Mathematics, 9(21) (2021), 2702. https://doi.org/10.3390/math9212702
  • Katugampola, U. N., A new fractional derivative with classical properties, (2014) e-print arXiv:1410.6535.
  • Kashuri, A., Ali, M. A., Abbas M., Budak, H., New inequalities for generalized m-convex functions via generalized fractional integral operators and their applications, International Journal of Nonlinear Analysis and Applications, 10(2) (2019), 275-299. doi: 10.22075/ijnaa. 2019.18455.2014
  • Kashuri, A., Liko, R., On Fej´er type inequalities for convex mappings utilizing generalized fractional integrals, Appl. Appl. Math., 15(1) (2020), 240–255.
  • Khalil, R., Alomari, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002
  • Miller, S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, New York, Wiley, 1993.
  • Mohammed, P. O., Sarikaya, M. Z., On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740. https://doi.org/10.1016/j.cam.2020.112740
  • Mubeen, S., Habibullah, G. M., k-Fractional integrals and application, Int. J. Contemp. Math. Sciences, 7(2) (2012), 89–94.
  • Noor, M. A., Noor, K. I., Iftikhar, S., Some Newton’s type inequalities for harmonic convex functions, J. Adv. Math. Stud., 9(1) (2016), 07–16.
  • Noor, M. A., Noor K. I., Iftikhar, S., Newton inequalities for p-harmonic convex functions, Honam Math. J., 40(2) (2018), 239–250. https://doi.org/10.5831/HMJ.2018.40.2.239
  • Park, J., On Simpson-like type integral inequalities for differentiable preinvex functions, Appl. Math. Sci., 7(121) (2013), 6009–6021. http://dx.doi.org/10.12988/ams.2013.39498
  • Podlubni, I., Fractional Differential Equations, San Diego, CA: Academic Press, 1999.
  • Sarikaya, M. Z., Set, E., Yaldiz, H., Basak, N., Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57(9–10) (2013), 2403– 2407. https://doi.org/10.1016/j.mcm.2011.12.048
  • Sarikaya, M. Z., Akkurt, A., Budak, H., Yildirim, M. E., Yildirim, H., Hermite-Hadamard’s inequalities for conformable fractional integrals, Konuralp Journal of Mathematics, 8(2) (2020), 376-383.
  • Sarikaya, M. Z., Ogunmez, H., On new inequalities via Riemann–Liouville fractional integration, Abs. Appl. Anal. 2012. Article ID 428983, 10 pages. doi:10.1155/2012/428983.
  • Sarikaya, M. Z., Ertugral, F., On the generalized Hermite-Hadamard inequalities, An. Univ. Craiova Ser. Mat. Inform., 47(1) (2020), 193–213.
  • Sarikaya, M. Z., Set, E., Özdemir, M. E., On new inequalities of Simpson’s type for convex functions, RGMIA Res. Rep. Coll., 13(2) (2010), Article2.
  • Sarikaya, M. Z., Set, E., Özdemir, M. E., On new inequalities of Simpson’s type for s-convex functions, Comput. Math. Appl., 60(8) (2020), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033
  • Set, E., Butt, S. I., Akdemir, A. O., Karaoglan, A., Abdeljawad, T., New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators, Chaos Solitons Fractals, 143 (2021), 110554. https://doi.org/10.1016/j.chaos.2020.110554
  • Turkay, M. E., Sarikaya, M. Z., Budak, H., Yildirim, H., Some Hermite-Hadamard type inequalities for co-ordinated convex functions via generalized fractional integrals, Submitted, ResearchGate Article: https://www.researchgate.net/publication/321803898.
  • Qi, F., Mohammed, P. O., Yao, J.-C., Yao, Y.-H., Generalized fractional integral inequalities of Hermite–Hadamard type for (α,m)-convex functions, J. Inequal. Appl. 2019, 135 (2019). https://doi.org/10.1186/s13660-019-2079-6
  • Vivas-Cortez, M., Ali, M. A., Kashuri, A., Sial, I. B., Zhang, Z., Some new Newton’s type integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry, 12(9) (2020) 1476; https://doi.org/10.3390/sym12091476.
  • Zhao, D., Ali, M. A., Kashuri, A., Budak, H., Sarikaya, M. Z., Hermite–Hadamard-type inequalities for the interval-valued approximately h−convex functions via generalized fractional integrals, J. Inequal. Appl., 2020(222) (2020), 1–38. https://doi.org/10.1186/s13660-020-02488-5
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Research Article
Yazarlar

Hasan Kara 0000-0002-2075-944X

Hüseyin Budak 0000-0001-8843-955X

Muhammad Aamir Ali 0000-0001-5341-4926

Fatih Hezenci 0000-0003-1008-5856

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 4 Ekim 2021
Kabul Tarihi 23 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 71 Sayı: 3

Kaynak Göster

APA Kara, H., Budak, H., Ali, M. A., Hezenci, F. (2022). On inequalities of Simpson’s type for convex functions via generalized fractional integrals. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(3), 806-825. https://doi.org/10.31801/cfsuasmas.1004300
AMA Kara H, Budak H, Ali MA, Hezenci F. On inequalities of Simpson’s type for convex functions via generalized fractional integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Eylül 2022;71(3):806-825. doi:10.31801/cfsuasmas.1004300
Chicago Kara, Hasan, Hüseyin Budak, Muhammad Aamir Ali, ve Fatih Hezenci. “On Inequalities of Simpson’s Type for Convex Functions via Generalized Fractional Integrals”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, sy. 3 (Eylül 2022): 806-25. https://doi.org/10.31801/cfsuasmas.1004300.
EndNote Kara H, Budak H, Ali MA, Hezenci F (01 Eylül 2022) On inequalities of Simpson’s type for convex functions via generalized fractional integrals. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 3 806–825.
IEEE H. Kara, H. Budak, M. A. Ali, ve F. Hezenci, “On inequalities of Simpson’s type for convex functions via generalized fractional integrals”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 71, sy. 3, ss. 806–825, 2022, doi: 10.31801/cfsuasmas.1004300.
ISNAD Kara, Hasan vd. “On Inequalities of Simpson’s Type for Convex Functions via Generalized Fractional Integrals”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/3 (Eylül 2022), 806-825. https://doi.org/10.31801/cfsuasmas.1004300.
JAMA Kara H, Budak H, Ali MA, Hezenci F. On inequalities of Simpson’s type for convex functions via generalized fractional integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:806–825.
MLA Kara, Hasan vd. “On Inequalities of Simpson’s Type for Convex Functions via Generalized Fractional Integrals”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 71, sy. 3, 2022, ss. 806-25, doi:10.31801/cfsuasmas.1004300.
Vancouver Kara H, Budak H, Ali MA, Hezenci F. On inequalities of Simpson’s type for convex functions via generalized fractional integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(3):806-25.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.