In this study, we show that the system of difference equations
\begin{align}
x_{n}=\frac{x_{n-2}y_{n-3}}{y_{n-1}\left(a+bx_{n-2}y_{n-3} \right) }, \nonumber \\
y_{n}=\frac{y_{n-2}z_{n-3}}{z_{n-1}\left(c+dy_{n-2}z_{n-3} \right) },~n\in\mathbb{N}_{0}, ~ \nonumber \\
z_{n}=\frac{z_{n-2}x_{n-3}}{x_{n-1}\left(e+fz_{n-2}x_{n-3} \right) }, \nonumber \\
\end{align}
where the initial values $x_{-i}, y_{-i}, z_{-i}$, $i=\overline{1,3}$ and the parameters $a$, $b$, $c$, $d$, $e$, $f$ are non-zero real numbers, can be solved in closed form. Moreover, we obtain the solutions of above system in explicit form according to the parameters $a$, $c$ and $e$ are equal $1$ or not equal $1$. In addition, we get periodic solutions of aforementioned system. Finally, we define the forbidden set of the initial conditions by using the acquired formulas.
Karamanoglu Mehmetbey University
13-YL-22
This paper was presented in 4th International Conference on Pure and Applied Mathematics (ICPAM - VAN 2022), Van-Turkey, June 22-23, 2022. This work is supported by the Scientific Research Project Fund of Karamanoglu Mehmetbey University under the project number 13-YL-22.
13-YL-22
Birincil Dil | İngilizce |
---|---|
Konular | Uygulamalı Matematik |
Bölüm | Research Article |
Yazarlar | |
Proje Numarası | 13-YL-22 |
Yayımlanma Tarihi | 23 Haziran 2023 |
Gönderilme Tarihi | 18 Ağustos 2022 |
Kabul Tarihi | 26 Ekim 2022 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 72 Sayı: 2 |
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.
This work is licensed under a Creative Commons Attribution 4.0 International License.