Araştırma Makalesi
BibTex RIS Kaynak Göster

Bounds for the maximum eigenvalues of the Fibonacci-Frank and Lucas-Frank matrices

Yıl 2024, Cilt: 73 Sayı: 2, 420 - 436, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1299736

Öz

Frank matrix is one of the popular test matrices for eigenvalue routines because it has well-conditioned and poorly conditioned eigenvalues. In this paper, we investigate the bounds for the maximum eigenvalues of the special cases of the generalized Frank matrices which are called Fibonacci-Frank and Lucas-Frank matrices. Then, we obtain the Euclidean norms and the upper bounds for the spectral norms of these matrices.

Kaynakça

  • Bahsi, M., On the norms of circulant matrices with the generalized Fibonacci and Lucas numbers, TWMS Journal of Pure and Applied Mathematics, 6(1) (2015), 84-92.
  • Dupree, E., Mathes, B., Singular values of k-Fibonacci and k-Lucas Hankel matrices, International Journal of Contemporary Mathematical Sciences, 47(7) (2012), 2327-2339.
  • Frank, W. L., Computing eigenvalues of complex matrices by determinant evaluation and by methods of Danilewski and Wielandt, Journal of the Society for Industrial and Applied Mathematics, 6(4) (1958), 378-392. https://doi.org/10.1137/0106026
  • Greenberg, L., Sturm sequences for nonlinear eigenvalue problems, SIAM Journal on Mathematical Analysis, 20 (1) (1989), 182-199. https://doi.org/10.1137/0520015
  • Hake, J. F., A remark on Frank matrices, Computing, 35(3) (1985), 375-379.
  • Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, 1985.
  • Jafari-Petroudi, S. H., Pirouz, M., On the bounds for the spectral norm of particular matrices with Fibonacci and Lucas numbers, International Journal of Advances in Applied Mathematics and Mechanics, 3(4) (2016), 82–90.
  • Koshy, T., Fibonacci and Lucas Numbers With Applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts, New York, Wiley, 2001.
  • Mersin, E. Ö., Sturm’s Theorem for Min matrices, AIMS Mathematics, 8(7) (2023), 17229-17245. https://doi.org/10.3934/math.2023880
  • Mersin, E. Ö., Properties of generalized Frank matrices, PhD. Thesis, Aksaray University Graduate School of Natural and Applied Sciences, Department of Mathematics, 2021.
  • Mersin, E. Ö., Bahşi, M., Sturm theorem for the generalized Frank matrix, Hacettepe Journal of Mathematics and Statistics, 50(4) (2021), 1002–1011. https://doi.org/10.15672/hujms.773281
  • Mersin, E. Ö., Bahşi, M., Maden, A. D., Some properties of generalized Frank matrices, Mathematical Sciences and Applications E-Notes, 8(2) (2020), 170-177. https://doi.org/10.36753/mathenot.672621
  • Milovanovic, I. Z., Milovanovic, E. I., Matejic, M., Some inequalities for general sum connectivity index, MATCH Communications in Mathematical in Computer Chemistry, 79 (2018), 477-489.
  • Mitrinovic, D. S., Vasic, P. M., Analytic Inequalities, Springer, Berlin, 1970.
  • Nalli, A., Şen, M., On the norms of circulant matrices with generalized Fibonacci numbers, Selcuk Journal of Applied Mathematics, 11(1) (2010), 107-116. https://doi.org/10.13069/jacodesmath.12813
  • Ortega, J. M., On Sturm sequences for tridiagonal matrices, Journal of the ACM (JACM), 7(3) (1960), 260-263.
  • Shen, S., Cen, J., On the bounds for the norms of r-circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation, 216(10) (2010), 2891-2897. https://doi.org/10.1016/j.amc.2010.03.140
  • Solak, S., On the norms of circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation, 160(1) (2005), 125-132. https://doi.org/10.1016/j.amc.2003.08.126
  • Solak, S., Erratum to “On the norms of circulant matrices with the Fibonacci and Lucas numbers" [Appl. Math. Comput. 160 (2005), 125–132], Applied Mathematics and Computation, 2(190) (2007), 1855-1856.
  • Solak, S., Bahşi, M., On the spectral norms of Toeplitz matrices with Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics, 42(1) (2013), 15-19.
  • Stoer, J., Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.
  • Vajda, S., Fibonacci and Lucas Numbers, and the Golden Section, John Wiley and Sons, New York, 1989.
  • Varah, J. M., A generalization of the Frank matrix, SIAM Journal on Scientific and Statistical Computing, 7(3) (1986) 835-839. https://doi.org/10.1137/0907056
  • Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University Press, 1965.
Yıl 2024, Cilt: 73 Sayı: 2, 420 - 436, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1299736

Öz

Kaynakça

  • Bahsi, M., On the norms of circulant matrices with the generalized Fibonacci and Lucas numbers, TWMS Journal of Pure and Applied Mathematics, 6(1) (2015), 84-92.
  • Dupree, E., Mathes, B., Singular values of k-Fibonacci and k-Lucas Hankel matrices, International Journal of Contemporary Mathematical Sciences, 47(7) (2012), 2327-2339.
  • Frank, W. L., Computing eigenvalues of complex matrices by determinant evaluation and by methods of Danilewski and Wielandt, Journal of the Society for Industrial and Applied Mathematics, 6(4) (1958), 378-392. https://doi.org/10.1137/0106026
  • Greenberg, L., Sturm sequences for nonlinear eigenvalue problems, SIAM Journal on Mathematical Analysis, 20 (1) (1989), 182-199. https://doi.org/10.1137/0520015
  • Hake, J. F., A remark on Frank matrices, Computing, 35(3) (1985), 375-379.
  • Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, 1985.
  • Jafari-Petroudi, S. H., Pirouz, M., On the bounds for the spectral norm of particular matrices with Fibonacci and Lucas numbers, International Journal of Advances in Applied Mathematics and Mechanics, 3(4) (2016), 82–90.
  • Koshy, T., Fibonacci and Lucas Numbers With Applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts, New York, Wiley, 2001.
  • Mersin, E. Ö., Sturm’s Theorem for Min matrices, AIMS Mathematics, 8(7) (2023), 17229-17245. https://doi.org/10.3934/math.2023880
  • Mersin, E. Ö., Properties of generalized Frank matrices, PhD. Thesis, Aksaray University Graduate School of Natural and Applied Sciences, Department of Mathematics, 2021.
  • Mersin, E. Ö., Bahşi, M., Sturm theorem for the generalized Frank matrix, Hacettepe Journal of Mathematics and Statistics, 50(4) (2021), 1002–1011. https://doi.org/10.15672/hujms.773281
  • Mersin, E. Ö., Bahşi, M., Maden, A. D., Some properties of generalized Frank matrices, Mathematical Sciences and Applications E-Notes, 8(2) (2020), 170-177. https://doi.org/10.36753/mathenot.672621
  • Milovanovic, I. Z., Milovanovic, E. I., Matejic, M., Some inequalities for general sum connectivity index, MATCH Communications in Mathematical in Computer Chemistry, 79 (2018), 477-489.
  • Mitrinovic, D. S., Vasic, P. M., Analytic Inequalities, Springer, Berlin, 1970.
  • Nalli, A., Şen, M., On the norms of circulant matrices with generalized Fibonacci numbers, Selcuk Journal of Applied Mathematics, 11(1) (2010), 107-116. https://doi.org/10.13069/jacodesmath.12813
  • Ortega, J. M., On Sturm sequences for tridiagonal matrices, Journal of the ACM (JACM), 7(3) (1960), 260-263.
  • Shen, S., Cen, J., On the bounds for the norms of r-circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation, 216(10) (2010), 2891-2897. https://doi.org/10.1016/j.amc.2010.03.140
  • Solak, S., On the norms of circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation, 160(1) (2005), 125-132. https://doi.org/10.1016/j.amc.2003.08.126
  • Solak, S., Erratum to “On the norms of circulant matrices with the Fibonacci and Lucas numbers" [Appl. Math. Comput. 160 (2005), 125–132], Applied Mathematics and Computation, 2(190) (2007), 1855-1856.
  • Solak, S., Bahşi, M., On the spectral norms of Toeplitz matrices with Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics, 42(1) (2013), 15-19.
  • Stoer, J., Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.
  • Vajda, S., Fibonacci and Lucas Numbers, and the Golden Section, John Wiley and Sons, New York, 1989.
  • Varah, J. M., A generalization of the Frank matrix, SIAM Journal on Scientific and Statistical Computing, 7(3) (1986) 835-839. https://doi.org/10.1137/0907056
  • Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University Press, 1965.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Research Article
Yazarlar

Efruz Özlem Mersin 0000-0001-6260-9063

Mustafa Bahşi 0000-0002-6356-6592

Yayımlanma Tarihi 21 Haziran 2024
Gönderilme Tarihi 20 Mayıs 2023
Kabul Tarihi 29 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 73 Sayı: 2

Kaynak Göster

APA Mersin, E. Ö., & Bahşi, M. (2024). Bounds for the maximum eigenvalues of the Fibonacci-Frank and Lucas-Frank matrices. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(2), 420-436. https://doi.org/10.31801/cfsuasmas.1299736
AMA Mersin EÖ, Bahşi M. Bounds for the maximum eigenvalues of the Fibonacci-Frank and Lucas-Frank matrices. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Haziran 2024;73(2):420-436. doi:10.31801/cfsuasmas.1299736
Chicago Mersin, Efruz Özlem, ve Mustafa Bahşi. “Bounds for the Maximum Eigenvalues of the Fibonacci-Frank and Lucas-Frank Matrices”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, sy. 2 (Haziran 2024): 420-36. https://doi.org/10.31801/cfsuasmas.1299736.
EndNote Mersin EÖ, Bahşi M (01 Haziran 2024) Bounds for the maximum eigenvalues of the Fibonacci-Frank and Lucas-Frank matrices. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 2 420–436.
IEEE E. Ö. Mersin ve M. Bahşi, “Bounds for the maximum eigenvalues of the Fibonacci-Frank and Lucas-Frank matrices”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 73, sy. 2, ss. 420–436, 2024, doi: 10.31801/cfsuasmas.1299736.
ISNAD Mersin, Efruz Özlem - Bahşi, Mustafa. “Bounds for the Maximum Eigenvalues of the Fibonacci-Frank and Lucas-Frank Matrices”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/2 (Haziran 2024), 420-436. https://doi.org/10.31801/cfsuasmas.1299736.
JAMA Mersin EÖ, Bahşi M. Bounds for the maximum eigenvalues of the Fibonacci-Frank and Lucas-Frank matrices. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:420–436.
MLA Mersin, Efruz Özlem ve Mustafa Bahşi. “Bounds for the Maximum Eigenvalues of the Fibonacci-Frank and Lucas-Frank Matrices”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 73, sy. 2, 2024, ss. 420-36, doi:10.31801/cfsuasmas.1299736.
Vancouver Mersin EÖ, Bahşi M. Bounds for the maximum eigenvalues of the Fibonacci-Frank and Lucas-Frank matrices. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(2):420-36.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.