Araştırma Makalesi
BibTex RIS Kaynak Göster

Mevcut Bir Yığma Baraj Yapısındaki Potansiyel Çatlakların Tespiti ve Analizi için Sayısal Metodoloji

Yıl 2023, , 10 - 29, 12.09.2024
https://doi.org/10.55205/joctensa.2220231509339

Öz

ÖZ
Son zamanlarda yapılan çok sayıda çalışma toprak dolgu ve beton baraj yapılarının sismik analizlerine odaklanırken, yığma barajlar üzerine yapılan araştırmalar sınırlı kalmıştır. Bu barajların sismik tepkisi öncelikle doğaları gereği süreksiz özelliklerinden etkilenmektedir. Bu nitelik, deprem olayları sırasında önemli reaksiyonlara neden olabilir. Bu makale, yığma bir barajda depremin neden olduğu hasar modellerini tahmin etmeyi amaçlayan sayısal bir metodoloji sunmaktadır. Bu sonuçların sonlu elemanlar yazılımına aktarılması ve ardından barajın yapısal bütünlüğünü gözlemlenen hasarlarla ilişkili olarak değerlendirmek ve bu hasarların zaman içinde nasıl geliştiğini araştırmak için analitik tekniklerin kullanılması süreci özetlenmektedir. Genişletilmiş Sonlu Elemanlar Yöntemi (XFEM) kullanan bir Sonlu Elemanlar (FE) modeli kullanılarak 2 boyutlu bir kabuk modeli ele alınarak sayısal bir simülasyon gerçekleştirilmiştir. FE modelleri doğrusal olmayan zaman-tarih analizleri kullanılarak gerçekleştirilmiştir. Hesaplanan sonuçları literatürdeki mevcut verilerle karşılaştırmak için bir değerlendirme yapılmıştır. Bu değerlendirme hem modal analizi hem de gerilme analizini kapsar ve yığma baraj içindeki çatlak ve hasar dağılımındaki değişimler de dahil olmak üzere birincil hasar mekanizmalarının incelenmesini içerir. Bu doğrulama adımı, simülasyonun gerçek dünya fenomenini doğru bir şekilde temsil ettiğinden emin olmak için çok önemlidir.

Kaynakça

  • Mridha, S. and Maity, D. (2014). “Experimental investigation on nonlinear dynamic response of concrete gravity dam-reservoir system”, Engineering Structures, 80,289-297. https://doi.org/10.1016/j.engstruct.2014.09.017
  • Valamanesh, V., Estekanchi, H.E., Vafai, A. and Ghaemian, M. (2011). “Application of the endurance time method in seismic analysis of concrete gravity dams”, Scientia Iranica, 18(3),326-37.
  • Wang, G., Lu, W. and Zhang, S. (2021). “Comparative analysis of nonlinear seismic response of concrete gravity dams using XFEM and CDP model”, Springer, Seismic Performance Analysis of Concrete Gravity Dams,
  • Ouzandja, D. and Berrabah, A.T. (2023). “Deterministic seismic damage analysis for concrete gravity dams: a case study of Oued Fodda Dam”, Acta Mechanica et Automatica, 17(3), 347-356. DOI: https://doi.org/10.2478/ama-2023-0039
  • Guanglun, W., Pekau, O. A., Chuhan, Z. and Shaomin, W. (2000). “Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics”, Engineering Fracture Mechanics, 65(1), 67-87.
  • Peramuna, P.D.P.O., Neluwala, N.G.P.B., Wijesundara, K.K., Venkatesan, S., De Silva, S. and Dissanayake, P.B.R. (2024). “Novel approach to the derivation of dam breach parameters in 2D hydrodynamic modeling of earthquake induced dam failures”, Science of The Total Environment, 927,171505. https://doi.org/10.1016/j.scitotenv.2024.171505
  • Galván, J.C., Padrón, L.A., Aznárez, J.J. and Maeso, O. (2022). “Boundary element model for the analysis of the dynamic response of the Soria arch dam and experimental validation from ambient vibration tests”, Engineering Analysis with Boundary Elements,144, 67-80.
  • Huang, Z. and Han, Z. (2023). “A novel meshfree method for investigating the impact of transverse joints quality on Xiaowan arch dam model”, Structures, 53,447-459.
  • Mirzabozorg, H. (2024). “Investigating the significance of fluid load effects on wet surfaces in concrete dam analysis: an examination of structural behavior and performance using the pine flat dam as a case study”, Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-024-08993-9
  • Rezaiee-Pajand, M., Kazemiyan, M.S. and Aftabi Sani, A. (2021). “A literature review on dynamic analysis of concrete gravity and arch dams”, Archives of Computational Methods in Engineering, 28, 4357–4372. https://doi.org/10.1007/s11831-021-09564-z
  • Fenves, G. and Vargas-Loli, L. M. (1988). “Nonlinear dynamic analysis of fluid-structure systems”, Journal of Engineering Mechanics, 114(2), 219-240.
  • Ayari, M. L. and Saouma, V. E. A. (1990). “Fracture mechanics based seismic analysis of concrete gravity dams using discrete cracks”, Engineering Fracture Mechanics, 35(1-3), 587-598.
  • Omidi, O., Lotfi, V. and Valliappan, S. (2012). “Plastic-damage analysis of Koyna dam in different damping mechanisms with dam–water interaction”, In 15th world conference on earthquake engineering, WCEE ,pp. 24-28.
  • Wang, G., Wang, Y., Lu, W., Zhou, C., Chen, M. and Yan, P. (2015). “XFEM based seismic potential failure mode analysis of concrete gravity dam–water–foundation systems through incremental dynamic analysis”, Engineering Structures, 98, 81-94.
  • Haghani, M., Neya, B. N., Ahmadi, M. T. and Amiri, J. V. (2022). “A new numerical approach in the seismic failure analysis of concrete gravity dams using extended finite element method”, Engineering Failure Analysis, 132,105835.
  • Feitosa e Castro, R. M., Cunha, S. P. D., Feitosa e Castro, P. S. A., Pina Neto, J. M. D., Ramos, E. S. and Bailäo, L. A. (1994). “Diagnóstico pré-natal de gêmeos unidos”, Rev. bras. ginecol. obstet, 16(3/4),141-3.
  • Bretas, E. M., Lemos, J. V. and Lourenço, P. B. (2012). “Masonry dams: analysis of the historical profiles of Sazilly, Delocre, and Rankine”, International Journal of Architectural Heritage, 6(1), 19–45.
  • CEN (2005) European standard EN1998-3. Eurocode 8: design provisions for earthquake resistance of structures – Part 3: assessment and retrofitting of buildings. European Committee for Standardisation, Brussels.
  • Bretas, E. M., Lemos, J. V. and Lourenço, P. B. (2015). “Seismic analysis of masonry gravity dams using the discrete element method: Implementation and application”, Journal of Earthquake Engineering, 20(2), 157-184.
  • ABAQUS (2017), Dassault Systemes Simulia Corporation, Providence, Rhode Island.
  • Papadopoulos, C. A. and Dimarogonas, A. D. (1987). “Coupled longitudinal and bending vibrations of a rotating shaft with an open crack”, Journal of sound and vibration, 117(1), 81-93.
  • Bhattacharjee, S.S., and Leger, P., 1993. “Seismic Cracking and Energy Dissipation in Concrete Gravity Dams”, Earthquake Engineering & Structural Dynamics, 22(11), 991–1007.
  • Feltrin, G., Galli, M., and Bachmann, H., 1992. “Influence of Cracking on the Earthquake Response of Concrete Gravity Dams with Reservoir”, Proceedings of the Tenth World Conference on Earthquake Engineering, Madrid, Spain, Vol. 8, pp. 4627–4632.
  • Parvathi, I. S., Mahesh, M., and Kamal, D. R. (2022). “XFEM Method for Crack Propagation in Concrete Gravity Dams”, Journal of The Institution of Engineers (India): Series A, 103(2), 677-687.

Numerical Methodology for Detection and Analysis of Potential Cracks in an Existing masonry dam Structure

Yıl 2023, , 10 - 29, 12.09.2024
https://doi.org/10.55205/joctensa.2220231509339

Öz

Many recent studies have focused on the seismic analysis of earthfill and concrete dam structures, while research on masonry dams remains limited. The seismic response of these dams is primarily influenced by their inherently discontinuous nature, which can lead to significant responses during earthquake events. This paper presents a numerical methodology aimed at predicting earthquake-induced damage patterns in a masonry dam. It outlines the process of importing these results into finite element software and then using analytical techniques to evaluate the structural integrity of the dam in relation to the observed damage, and to investigate how this damage evolves over time. A numerical simulation using a 2D shell model has been conducted using a Finite Element (FE) model with the Extended Finite Element Method (XFEM). The FE models have been developed using non-linear time history analysis. An evaluation will compare the calculated results with existing data from the literature, including both modal analysis and stress analysis. This evaluation involves investigating primary failure mechanisms, including variations in crack and damage distribution within the masonry dam. This verification step is crucial to ensure that the simulation accurately represents the real-world phenomenon.

Kaynakça

  • Mridha, S. and Maity, D. (2014). “Experimental investigation on nonlinear dynamic response of concrete gravity dam-reservoir system”, Engineering Structures, 80,289-297. https://doi.org/10.1016/j.engstruct.2014.09.017
  • Valamanesh, V., Estekanchi, H.E., Vafai, A. and Ghaemian, M. (2011). “Application of the endurance time method in seismic analysis of concrete gravity dams”, Scientia Iranica, 18(3),326-37.
  • Wang, G., Lu, W. and Zhang, S. (2021). “Comparative analysis of nonlinear seismic response of concrete gravity dams using XFEM and CDP model”, Springer, Seismic Performance Analysis of Concrete Gravity Dams,
  • Ouzandja, D. and Berrabah, A.T. (2023). “Deterministic seismic damage analysis for concrete gravity dams: a case study of Oued Fodda Dam”, Acta Mechanica et Automatica, 17(3), 347-356. DOI: https://doi.org/10.2478/ama-2023-0039
  • Guanglun, W., Pekau, O. A., Chuhan, Z. and Shaomin, W. (2000). “Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics”, Engineering Fracture Mechanics, 65(1), 67-87.
  • Peramuna, P.D.P.O., Neluwala, N.G.P.B., Wijesundara, K.K., Venkatesan, S., De Silva, S. and Dissanayake, P.B.R. (2024). “Novel approach to the derivation of dam breach parameters in 2D hydrodynamic modeling of earthquake induced dam failures”, Science of The Total Environment, 927,171505. https://doi.org/10.1016/j.scitotenv.2024.171505
  • Galván, J.C., Padrón, L.A., Aznárez, J.J. and Maeso, O. (2022). “Boundary element model for the analysis of the dynamic response of the Soria arch dam and experimental validation from ambient vibration tests”, Engineering Analysis with Boundary Elements,144, 67-80.
  • Huang, Z. and Han, Z. (2023). “A novel meshfree method for investigating the impact of transverse joints quality on Xiaowan arch dam model”, Structures, 53,447-459.
  • Mirzabozorg, H. (2024). “Investigating the significance of fluid load effects on wet surfaces in concrete dam analysis: an examination of structural behavior and performance using the pine flat dam as a case study”, Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-024-08993-9
  • Rezaiee-Pajand, M., Kazemiyan, M.S. and Aftabi Sani, A. (2021). “A literature review on dynamic analysis of concrete gravity and arch dams”, Archives of Computational Methods in Engineering, 28, 4357–4372. https://doi.org/10.1007/s11831-021-09564-z
  • Fenves, G. and Vargas-Loli, L. M. (1988). “Nonlinear dynamic analysis of fluid-structure systems”, Journal of Engineering Mechanics, 114(2), 219-240.
  • Ayari, M. L. and Saouma, V. E. A. (1990). “Fracture mechanics based seismic analysis of concrete gravity dams using discrete cracks”, Engineering Fracture Mechanics, 35(1-3), 587-598.
  • Omidi, O., Lotfi, V. and Valliappan, S. (2012). “Plastic-damage analysis of Koyna dam in different damping mechanisms with dam–water interaction”, In 15th world conference on earthquake engineering, WCEE ,pp. 24-28.
  • Wang, G., Wang, Y., Lu, W., Zhou, C., Chen, M. and Yan, P. (2015). “XFEM based seismic potential failure mode analysis of concrete gravity dam–water–foundation systems through incremental dynamic analysis”, Engineering Structures, 98, 81-94.
  • Haghani, M., Neya, B. N., Ahmadi, M. T. and Amiri, J. V. (2022). “A new numerical approach in the seismic failure analysis of concrete gravity dams using extended finite element method”, Engineering Failure Analysis, 132,105835.
  • Feitosa e Castro, R. M., Cunha, S. P. D., Feitosa e Castro, P. S. A., Pina Neto, J. M. D., Ramos, E. S. and Bailäo, L. A. (1994). “Diagnóstico pré-natal de gêmeos unidos”, Rev. bras. ginecol. obstet, 16(3/4),141-3.
  • Bretas, E. M., Lemos, J. V. and Lourenço, P. B. (2012). “Masonry dams: analysis of the historical profiles of Sazilly, Delocre, and Rankine”, International Journal of Architectural Heritage, 6(1), 19–45.
  • CEN (2005) European standard EN1998-3. Eurocode 8: design provisions for earthquake resistance of structures – Part 3: assessment and retrofitting of buildings. European Committee for Standardisation, Brussels.
  • Bretas, E. M., Lemos, J. V. and Lourenço, P. B. (2015). “Seismic analysis of masonry gravity dams using the discrete element method: Implementation and application”, Journal of Earthquake Engineering, 20(2), 157-184.
  • ABAQUS (2017), Dassault Systemes Simulia Corporation, Providence, Rhode Island.
  • Papadopoulos, C. A. and Dimarogonas, A. D. (1987). “Coupled longitudinal and bending vibrations of a rotating shaft with an open crack”, Journal of sound and vibration, 117(1), 81-93.
  • Bhattacharjee, S.S., and Leger, P., 1993. “Seismic Cracking and Energy Dissipation in Concrete Gravity Dams”, Earthquake Engineering & Structural Dynamics, 22(11), 991–1007.
  • Feltrin, G., Galli, M., and Bachmann, H., 1992. “Influence of Cracking on the Earthquake Response of Concrete Gravity Dams with Reservoir”, Proceedings of the Tenth World Conference on Earthquake Engineering, Madrid, Spain, Vol. 8, pp. 4627–4632.
  • Parvathi, I. S., Mahesh, M., and Kamal, D. R. (2022). “XFEM Method for Crack Propagation in Concrete Gravity Dams”, Journal of The Institution of Engineers (India): Series A, 103(2), 677-687.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deprem Mühendisliği, İnşaat Mühendisliğinde Sayısal Modelleme
Bölüm Araştırma Makalesi
Yazarlar

Boudjamaa Roudane Bu kişi benim 0000-0002-4894-9931

Ali Kaya 0000-0003-2200-6844

Yayımlanma Tarihi 12 Eylül 2024
Gönderilme Tarihi 2 Temmuz 2024
Kabul Tarihi 23 Ağustos 2024
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Roudane, B., & Kaya, A. (2024). Numerical Methodology for Detection and Analysis of Potential Cracks in an Existing masonry dam Structure. Cihannüma Teknoloji Fen Ve Mühendislik Bilimleri Akademi Dergisi, 2(2), 10-29. https://doi.org/10.55205/joctensa.2220231509339