Araştırma Makalesi
BibTex RIS Kaynak Göster

Enhanced Enzyme Inhibitory Effects of the Nanohybrid Eggplant Extract: An Unusual Pharmaceutical Form for Medicinal Plant

Yıl 2024, Cilt: 14 Sayı: 1, 32 - 38, 28.03.2024
https://doi.org/10.33808/clinexphealthsci.1074661

Öz

Objective: Recently, biosynthesis/synthesis of nanoflowers has become very attractive for chemical and pharmaceutical sciences, and enhanced enzyme activities. Various plant extracts and their active compounds are effectively used as organic component for novel nanoflowers synthesis. Solanum melongena L., commonly known as eggplant in English, a vegetable and medicinal plant belongs to Solanaceae family has several advantages in materials synthesis due to cheap and obtained easily. The aim of this study is to compare the enzyme ((alpha-glucosidase (AGase), alpha-amylase (AAase), tyrosinase (Tyr), acetylcholinesterase (AChE) and butyryl cholinesterase (BChE)) inhibitory effects of the eggplant’ calyx extract and its Solanum-inorganic hybrid nanoflower (Sm-ihNFs) via in vitro experimental methods.
Methods: The hybrid nanoflower was formed (NF) with organic molecules, eggplant extract (Sm), and inorganic compounds, copper to enhance the catalytic activities. The inhibition capacities of the eggplant extract, and its hybrid nanoflower were evaluated on selected enzymes (AGase, AAase, Tyr, AChE and BChE) which play significant roles physiologically by in vitro tests in this study.
Results: According to inhibition percentages and IC50 values, Sm-ihNFs showed higher inhibitory activities on enzymes other than ache than the plain crude plant extract. Among all the enzymes that were studied, Sm-ihNFs demonstrated significantly higher alpha-glucosidase and alpha-amylase inhibition activities compared to acarbose. And when compared to galanthamine hydrobromide Sm-ihNFs showed higher enzyme inhibition and significant IC50 value.
Conclusion: It was thought that Sm-ihNFs prepared from eggplant extract may have promising potential for antidiabetic drug formulations in the future. The hybrid nanoflowers will be promising and guide for the future work in terms of pharmaceutical and cosmeceutical industry.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

Technology Research and Implementation Center (TAUM) at the Erciyes University

Kaynakça

  • Van Eck J, Snyder A. Eggplant (Solanum melongena L.). Methods Mol. Biol. 2006; 343: 439-447. DOI: 10.1385/1-59745-130-4:439
  • W.C. Evans, Trease and Evans Pharmacognosy, 15th ed. Sanders Co. Ltd.: Singapore; 2002: 33-35.
  • Dönmez C, Yalçın FN, Boyacıoğlu Ö, Korkusuz P, Akkol EK, Nemutlu E, Balaban HY, Çalışkan, UK. From nutrition to medicine: Assessing hemorrhoid healing activity of Solanum melongena L. via in vivo experimental models and its major chemicals. J. Ethnopharmacol. 2020; 261; 113-143. DOI: 10.1016/j.jep.2020.113143
  • Vohora SB, Kumar I, Khan MSY. Effect of alkaloids of Solanum melongena on the central nervous system. J. Ethnopharmacol. 1984; 11: 331-336. DOI: 10.1016/0378-8741(84)90078-3
  • Das J, Lahan, JP, Srivastava RB. Solanum melongena: A potential source of antifungal agent. Indian J. Microbiol. 2010; 50: 62-69. DOI: 10.1007/s12088-010-0004-2
  • Han SW, Tae J, Kim JA, Kim DK, Seo GS, Yun KJ, Lee YM. The aqueous extract of Solanum melongena inhibits PAR2 agonist-induced inflammation. Clin Chim Acta 2003; 328: 39-44. DOI: 10.1016/s0009-8981(02)00377-7
  • Bello SO, Muhammad B, Gammaniel KS, Aguye AI, Ahmed H, Njoku CH. Randomized double blind placebo controlled clinical trial of Solanum melongena L. fruit in moderate to severe asthmatics. J. Med. Sci. 2004; 4: 263-269. DOI: 10.3923/jms.2004.263.269
  • Bello SO, Muhammad BY, Gammaniel KS, Abdu-Aguye I, Ahmed H, Njoku CH, Salka AM. Preliminary evaluation of the toxicity and some pharmacological properties of the aqueous crude extract of Solanum melongena. Res. J. Agric. Biol. Sci. 2005; 1: 1-9.
  • Caliskan UK, Aka C, Oz MG. Plants Used in Anatolian Traditional Medicine for the Treatment of Hemorrhoid. Rec. Nat. Prod. 2017; 11: 235-250.
  • Kwon YI, Apostolidis E, Shetty K. In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresour. Technol. 2008; 99: 2981-2988. DOI: 10.1016/j.biortech.2007.06.035
  • Mutalik S, Paridhavi K, Rao CM, Udupa N. Antipyretic and analgesic effect of leaves of Solanum melongena Linn. in rodents. Indian J. Pharmacol. 2003; 35: 312-315.
  • Nisha P, Nazar PA, Jayamurthy P. A comparative study on antioxidant activities of different varieties of Solanum melongena. Food Chem. Toxicol. 2009; 47: 2640-2644. DOI: 10.1016/j.fct.2009.07.026
  • Sudheesh S, Sandhya C, Sarah-Koshy A, Vijayalakshmi NR. Antioxidant activity of flavonoids from Solanum melongena. Phytother. Res. 1999; 13: 393-396. DOI: 10.1002/(sici)1099-1573(199908/09)13:5<393::aid-ptr474>3.0.co;2-8
  • Gazzani G, Papetti A, Daglia M, Berte F, Gregotti C. Protective activity of water soluble components of some common diet vegetables on rat liver microsome and the effect of thermal treatment. Agric. Food Chem. 1998; 46: 4123-4127. DOI: 10.1021/jf980301g
  • Gul S, Ahmed S, Gul H, Kaneez KF. Investigating the protective effect of Solanum melongena. Asian J. Health 2011; 1: 276-294. DOI: 10.7828/ajoh.v1i1.169
  • Kritchevsky D, Tepper SA, Story JA. Influence of an eggplant (Solanum melongena) preparation on cholesterol metabolism in rats. Exp. Pathol. 1975; 10: 180-183. DOI: 10.1016/s0014-4908(75)80021-4
  • Sudheesh S, Presannakumar G, Vijayakumar S, Vijayalakshmi NR. Hypolipidemic effect of flavonoids from Solanum melongena. Plant Foods Hum. Nutr. 1997; 51: 321-330. DOI: 10.1023/a:1007965927434
  • Shum OL, Chiu KW. Hypotensive action of Solanum melongena on normotensive rats. Phytother. Res. 1991; 5: 76-81. DOI: 10.1002/ptr.2650050208
  • Mans DRA, Toelsie J, Mohan S, Jurgens S, Muhringen M, Illes S, Bipat R. Spasmogenic effect of a Solanum melongena leaf extract on guinea pig tracheal chains and its possible mechanism (s). J. Ethnopharmacol. 2004; 95: 329-333. DOI: 10.1016/j.jep.2004.07.017
  • Umamageswari MS, Maniyar YA. Evaluation of anti-inflammatory activity of aqueous extract of leaves of Solanum melongena linn. in experimental animals. J. Clin. Diagn. Res. 2015; 9: 01-01. DOI: 10.7860/JCDR/2015/10777.5428
  • Das M, Barua N. Pharmacological activities of Solanum melongena Linn. (Brinjal plant). Int. J. Green Pharm. (IJGP) 2013; 7: 274-277.
  • Mohammadinejad R, Karimi S, Iravani S, Varma R.S. Plant-derived nanostructures:types and applications. Green Chemistry. 2016; 18:20-52. DOI: 10.1039/C5GC01403D
  • Noma, S A A, Yılmaz, B S, Ulu, A, Özdemir, N, Ateş, B. Development of L-Asparaginase@hybrid nanoflowers (ASNase@HNFs) reactor system with enhanced enzymatic reusability and stability. Catal. Letters 2021, 151 (4), 1191–1201. DOI: 10.1007/s10562-020-03362-1
  • Somturk B, Yilmaz I, Altinkaynak C, Karatepe A, Özdemir N, Ocsoy I. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb. Technol. 2016; 86: 134-142. DOI: 10.1016/j.enzmictec.2015.09.005
  • Akhtar MS, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem. Eng. 2013; 1: 591-602. DOI: 10.1021/sc300118u
  • Ankamwar B, Damle C, Ahmad A, Sastry M. Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J. Nanosci. Nanotechnol. 2005; 5: 1665-1671. DOI: 10.1166/jnn.2005.184
  • Duman F, Ocsoy I, Kup FO. Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater. Sci. Eng. C 2016; 60: 333-338. DOI: 10.1016/j.msec.2015.11.052
  • Demirbas A, Welt BA, Ocsoy I. Biosynthesis of red cabbage extract directed Ag NPs and their effect on the loss of antioxidant activity. Mater. Lett. 2016; 179: 20-23. DOI: 10.1016/j.matlet.2016.05.056
  • Chung JE, Tan S, Gao SJ, Yongvongsoontorn N, Kim SH, Lee JH, Ying JY. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nat. Nanotechnol. 2014; 9: 907. DOI: 10.1038/nnano.2014.208
  • Altinkaynak C, Hemoglobin–metal2+ phosphate nanoflowers with enhanced peroxidase-like activities and their performance in the visual detection of hydrogen peroxide. New J. Chem., 2021; 45:1573. DOI: 10.1039/D0NJ04989A
  • Altinkaynak C, Ildiz N, Baldemir A, Ozdemir N, Yilmaz V, Ocsoy I. Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity. Derim. 2019; 3(6): 3-3. DOI: 10.16882/derim.2019.549151
  • Ildiz N, Baldemir A, Altinkaynak C, Özdemir N, Yilmaz V, Ocsoy I. Self-assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme Microb. Technol. 2017; 102: 60-66. DOI: 10.1016/j.enzmictec.2017.04.003
  • Baldemir A, Köse NB, Ildız N, İlgün S, Yusufbeyoğlu S, Yilmaz V, Ocsoy I. Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanoflowers: a new strategy to enhance antimicrobial activity. RSC Advances. 2017; 7(70): 44303-44308. DOI: 10.1039/C7RA07618E
  • Koshy DS, Das RK. Studies on the role of curcumin concentration, synthesis time, mechanism of formation, and fluorescence properties of curcumin–copper phosphate hybrid nanoflowers. Inorg. Nano-Met. Chem. 2020; 0: 1-8. DOI: 10.1080/24701556.2020.1841234
  • Ge J, Lei J, Zare RN. Protein–inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012; 7: 428–432. DOI: 10.1038/nnano.2012.80
  • Kumar D, Kumar H, Vedasiromoni JR, Pal BC. Bio- assay guided isolation of a-glucosidase inhibitory constituents from Hibiscus mutabilis leaves. Phytochem. Anal. 2012; 23: 421–425. DOI: 10.1002/pca.1375
  • Kumar D, Gupta N, Ghosh R, Gaonkar RH, Pal BC. α-glucosidase and α-amylase inhibitory constituent of Carex baccans: Bio-assay guided isolation and quantification by validated RP-HPLC-DAD. J. Funct. Foods 2013; 5: 211-218. DOI: 10.1016/j.jff.2012.10.007
  • Jeong SH, Ryu YB, Curtis-Long MJ, Ryu HW, Baek YS, Kang JE, Park KH. Tyrosinase Inhibitory Polyphenols from Roots of Morus ihou. J. Agric. Food Chem. 2009; 57: 1195-1203. DOI: 10.1021/jf8033286
  • Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961; 7: 88-95. DOI: 10.1016/0006-2952(61)90145-9
  • Ozturk M, Duru ME, Kivrak Ş, Mercan-Doğan N, Türkoglu A, Özler MA. In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: A comparative study on the three most edible mushrooms. Food Chem. Toxicol. 2011; 49: 1353-1360. DOI: 10.1016/j.fct.2011.03.019
  • Lam CS, Koon HK, Chung VCH, Cheung YT. A Public survey of traditional, complementary and integrative medicine use during the COVID-19 outbreak in Hong Kong. PloS One 2021; 16(7): 1-15. DOI: 10.1371/journal.pone.0253890
  • Kokila K, Priyadharshini SD, Sujatha V. Phytopharmacological properties of Albizia species: a review. Int. J Pharm. Pharm. Sci. 2013; 5(3): 70-73.
  • Siddiqui NA, Parvez MK, Al-Rehaily AJ, Al Dosari MS, Alam P, Shakeel F, Al Harbi HA. High-performance thin layer chromatography-based assay and stress study of a rare steroidal alkaloid solanopubamine in six species of Solanum grown in Saudi Arabia. Saudi Pharm. J. 2017; 25(2): 184-195. DOI: 10.1016/j.jsps.2016.05.003
  • Paoli SD, Dias AP, Capriles PV, Costa TE, Fonseca AS, Bernardo-Filho M. Effects of a tomato (Solanum lycopersicum) extract on the labeling of blood constituents with technetium-99m. Rev. Bras. Farmacogn. 2008; 18: 190-196. DOI: 10.1590/S0102-695X2008000200008
  • Asano N, Kato A, Matsui K, Watson AA, Nash RJ, Molyneux RJ, Winchester B. The effects of calystegines isolated from edible fruits and vegetables on mammalian liver glycosidases. Glycobiology 1997; 7: 1085-1088. DOI: 10.1093/glycob/7.8.1085
  • Ketprayoon T, Chaicharoenpong C. Tyrosinase inhibitory activity of some edible plants. In: Pakdibamrung K, Buaboocha T. BMB 2018. Proceedings of the international conference on biochemistry and molecular biology; 2018 Jun 20-22 Rayong, Thailand; 2018. pp.1-5.
  • Jo YN, Jeong HR, Jeong JH, Heo HJ. The skin protecting effects of ethanolic extracts of eggplant peels. Korean J. Food Sci. Technol. 2012; 44(1): 94-99. DOI: 10.9721/KJFST.2012.44.1.094
  • Popova I, Sell B, Pillai SS, Kuhl J, Dandurand LM. High-Performance Liquid Chromatography–Mass Spectrometry Analysis of Glycoalkaloids from Underexploited Solanum Species and Their Acetylcholinesterase Inhibition Activity. Plants. 2022; 11(3): 269-287. DOI: 10.3390/plants11030269
Yıl 2024, Cilt: 14 Sayı: 1, 32 - 38, 28.03.2024
https://doi.org/10.33808/clinexphealthsci.1074661

Öz

Proje Numarası

-

Kaynakça

  • Van Eck J, Snyder A. Eggplant (Solanum melongena L.). Methods Mol. Biol. 2006; 343: 439-447. DOI: 10.1385/1-59745-130-4:439
  • W.C. Evans, Trease and Evans Pharmacognosy, 15th ed. Sanders Co. Ltd.: Singapore; 2002: 33-35.
  • Dönmez C, Yalçın FN, Boyacıoğlu Ö, Korkusuz P, Akkol EK, Nemutlu E, Balaban HY, Çalışkan, UK. From nutrition to medicine: Assessing hemorrhoid healing activity of Solanum melongena L. via in vivo experimental models and its major chemicals. J. Ethnopharmacol. 2020; 261; 113-143. DOI: 10.1016/j.jep.2020.113143
  • Vohora SB, Kumar I, Khan MSY. Effect of alkaloids of Solanum melongena on the central nervous system. J. Ethnopharmacol. 1984; 11: 331-336. DOI: 10.1016/0378-8741(84)90078-3
  • Das J, Lahan, JP, Srivastava RB. Solanum melongena: A potential source of antifungal agent. Indian J. Microbiol. 2010; 50: 62-69. DOI: 10.1007/s12088-010-0004-2
  • Han SW, Tae J, Kim JA, Kim DK, Seo GS, Yun KJ, Lee YM. The aqueous extract of Solanum melongena inhibits PAR2 agonist-induced inflammation. Clin Chim Acta 2003; 328: 39-44. DOI: 10.1016/s0009-8981(02)00377-7
  • Bello SO, Muhammad B, Gammaniel KS, Aguye AI, Ahmed H, Njoku CH. Randomized double blind placebo controlled clinical trial of Solanum melongena L. fruit in moderate to severe asthmatics. J. Med. Sci. 2004; 4: 263-269. DOI: 10.3923/jms.2004.263.269
  • Bello SO, Muhammad BY, Gammaniel KS, Abdu-Aguye I, Ahmed H, Njoku CH, Salka AM. Preliminary evaluation of the toxicity and some pharmacological properties of the aqueous crude extract of Solanum melongena. Res. J. Agric. Biol. Sci. 2005; 1: 1-9.
  • Caliskan UK, Aka C, Oz MG. Plants Used in Anatolian Traditional Medicine for the Treatment of Hemorrhoid. Rec. Nat. Prod. 2017; 11: 235-250.
  • Kwon YI, Apostolidis E, Shetty K. In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresour. Technol. 2008; 99: 2981-2988. DOI: 10.1016/j.biortech.2007.06.035
  • Mutalik S, Paridhavi K, Rao CM, Udupa N. Antipyretic and analgesic effect of leaves of Solanum melongena Linn. in rodents. Indian J. Pharmacol. 2003; 35: 312-315.
  • Nisha P, Nazar PA, Jayamurthy P. A comparative study on antioxidant activities of different varieties of Solanum melongena. Food Chem. Toxicol. 2009; 47: 2640-2644. DOI: 10.1016/j.fct.2009.07.026
  • Sudheesh S, Sandhya C, Sarah-Koshy A, Vijayalakshmi NR. Antioxidant activity of flavonoids from Solanum melongena. Phytother. Res. 1999; 13: 393-396. DOI: 10.1002/(sici)1099-1573(199908/09)13:5<393::aid-ptr474>3.0.co;2-8
  • Gazzani G, Papetti A, Daglia M, Berte F, Gregotti C. Protective activity of water soluble components of some common diet vegetables on rat liver microsome and the effect of thermal treatment. Agric. Food Chem. 1998; 46: 4123-4127. DOI: 10.1021/jf980301g
  • Gul S, Ahmed S, Gul H, Kaneez KF. Investigating the protective effect of Solanum melongena. Asian J. Health 2011; 1: 276-294. DOI: 10.7828/ajoh.v1i1.169
  • Kritchevsky D, Tepper SA, Story JA. Influence of an eggplant (Solanum melongena) preparation on cholesterol metabolism in rats. Exp. Pathol. 1975; 10: 180-183. DOI: 10.1016/s0014-4908(75)80021-4
  • Sudheesh S, Presannakumar G, Vijayakumar S, Vijayalakshmi NR. Hypolipidemic effect of flavonoids from Solanum melongena. Plant Foods Hum. Nutr. 1997; 51: 321-330. DOI: 10.1023/a:1007965927434
  • Shum OL, Chiu KW. Hypotensive action of Solanum melongena on normotensive rats. Phytother. Res. 1991; 5: 76-81. DOI: 10.1002/ptr.2650050208
  • Mans DRA, Toelsie J, Mohan S, Jurgens S, Muhringen M, Illes S, Bipat R. Spasmogenic effect of a Solanum melongena leaf extract on guinea pig tracheal chains and its possible mechanism (s). J. Ethnopharmacol. 2004; 95: 329-333. DOI: 10.1016/j.jep.2004.07.017
  • Umamageswari MS, Maniyar YA. Evaluation of anti-inflammatory activity of aqueous extract of leaves of Solanum melongena linn. in experimental animals. J. Clin. Diagn. Res. 2015; 9: 01-01. DOI: 10.7860/JCDR/2015/10777.5428
  • Das M, Barua N. Pharmacological activities of Solanum melongena Linn. (Brinjal plant). Int. J. Green Pharm. (IJGP) 2013; 7: 274-277.
  • Mohammadinejad R, Karimi S, Iravani S, Varma R.S. Plant-derived nanostructures:types and applications. Green Chemistry. 2016; 18:20-52. DOI: 10.1039/C5GC01403D
  • Noma, S A A, Yılmaz, B S, Ulu, A, Özdemir, N, Ateş, B. Development of L-Asparaginase@hybrid nanoflowers (ASNase@HNFs) reactor system with enhanced enzymatic reusability and stability. Catal. Letters 2021, 151 (4), 1191–1201. DOI: 10.1007/s10562-020-03362-1
  • Somturk B, Yilmaz I, Altinkaynak C, Karatepe A, Özdemir N, Ocsoy I. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb. Technol. 2016; 86: 134-142. DOI: 10.1016/j.enzmictec.2015.09.005
  • Akhtar MS, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem. Eng. 2013; 1: 591-602. DOI: 10.1021/sc300118u
  • Ankamwar B, Damle C, Ahmad A, Sastry M. Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J. Nanosci. Nanotechnol. 2005; 5: 1665-1671. DOI: 10.1166/jnn.2005.184
  • Duman F, Ocsoy I, Kup FO. Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater. Sci. Eng. C 2016; 60: 333-338. DOI: 10.1016/j.msec.2015.11.052
  • Demirbas A, Welt BA, Ocsoy I. Biosynthesis of red cabbage extract directed Ag NPs and their effect on the loss of antioxidant activity. Mater. Lett. 2016; 179: 20-23. DOI: 10.1016/j.matlet.2016.05.056
  • Chung JE, Tan S, Gao SJ, Yongvongsoontorn N, Kim SH, Lee JH, Ying JY. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nat. Nanotechnol. 2014; 9: 907. DOI: 10.1038/nnano.2014.208
  • Altinkaynak C, Hemoglobin–metal2+ phosphate nanoflowers with enhanced peroxidase-like activities and their performance in the visual detection of hydrogen peroxide. New J. Chem., 2021; 45:1573. DOI: 10.1039/D0NJ04989A
  • Altinkaynak C, Ildiz N, Baldemir A, Ozdemir N, Yilmaz V, Ocsoy I. Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity. Derim. 2019; 3(6): 3-3. DOI: 10.16882/derim.2019.549151
  • Ildiz N, Baldemir A, Altinkaynak C, Özdemir N, Yilmaz V, Ocsoy I. Self-assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme Microb. Technol. 2017; 102: 60-66. DOI: 10.1016/j.enzmictec.2017.04.003
  • Baldemir A, Köse NB, Ildız N, İlgün S, Yusufbeyoğlu S, Yilmaz V, Ocsoy I. Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanoflowers: a new strategy to enhance antimicrobial activity. RSC Advances. 2017; 7(70): 44303-44308. DOI: 10.1039/C7RA07618E
  • Koshy DS, Das RK. Studies on the role of curcumin concentration, synthesis time, mechanism of formation, and fluorescence properties of curcumin–copper phosphate hybrid nanoflowers. Inorg. Nano-Met. Chem. 2020; 0: 1-8. DOI: 10.1080/24701556.2020.1841234
  • Ge J, Lei J, Zare RN. Protein–inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012; 7: 428–432. DOI: 10.1038/nnano.2012.80
  • Kumar D, Kumar H, Vedasiromoni JR, Pal BC. Bio- assay guided isolation of a-glucosidase inhibitory constituents from Hibiscus mutabilis leaves. Phytochem. Anal. 2012; 23: 421–425. DOI: 10.1002/pca.1375
  • Kumar D, Gupta N, Ghosh R, Gaonkar RH, Pal BC. α-glucosidase and α-amylase inhibitory constituent of Carex baccans: Bio-assay guided isolation and quantification by validated RP-HPLC-DAD. J. Funct. Foods 2013; 5: 211-218. DOI: 10.1016/j.jff.2012.10.007
  • Jeong SH, Ryu YB, Curtis-Long MJ, Ryu HW, Baek YS, Kang JE, Park KH. Tyrosinase Inhibitory Polyphenols from Roots of Morus ihou. J. Agric. Food Chem. 2009; 57: 1195-1203. DOI: 10.1021/jf8033286
  • Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961; 7: 88-95. DOI: 10.1016/0006-2952(61)90145-9
  • Ozturk M, Duru ME, Kivrak Ş, Mercan-Doğan N, Türkoglu A, Özler MA. In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: A comparative study on the three most edible mushrooms. Food Chem. Toxicol. 2011; 49: 1353-1360. DOI: 10.1016/j.fct.2011.03.019
  • Lam CS, Koon HK, Chung VCH, Cheung YT. A Public survey of traditional, complementary and integrative medicine use during the COVID-19 outbreak in Hong Kong. PloS One 2021; 16(7): 1-15. DOI: 10.1371/journal.pone.0253890
  • Kokila K, Priyadharshini SD, Sujatha V. Phytopharmacological properties of Albizia species: a review. Int. J Pharm. Pharm. Sci. 2013; 5(3): 70-73.
  • Siddiqui NA, Parvez MK, Al-Rehaily AJ, Al Dosari MS, Alam P, Shakeel F, Al Harbi HA. High-performance thin layer chromatography-based assay and stress study of a rare steroidal alkaloid solanopubamine in six species of Solanum grown in Saudi Arabia. Saudi Pharm. J. 2017; 25(2): 184-195. DOI: 10.1016/j.jsps.2016.05.003
  • Paoli SD, Dias AP, Capriles PV, Costa TE, Fonseca AS, Bernardo-Filho M. Effects of a tomato (Solanum lycopersicum) extract on the labeling of blood constituents with technetium-99m. Rev. Bras. Farmacogn. 2008; 18: 190-196. DOI: 10.1590/S0102-695X2008000200008
  • Asano N, Kato A, Matsui K, Watson AA, Nash RJ, Molyneux RJ, Winchester B. The effects of calystegines isolated from edible fruits and vegetables on mammalian liver glycosidases. Glycobiology 1997; 7: 1085-1088. DOI: 10.1093/glycob/7.8.1085
  • Ketprayoon T, Chaicharoenpong C. Tyrosinase inhibitory activity of some edible plants. In: Pakdibamrung K, Buaboocha T. BMB 2018. Proceedings of the international conference on biochemistry and molecular biology; 2018 Jun 20-22 Rayong, Thailand; 2018. pp.1-5.
  • Jo YN, Jeong HR, Jeong JH, Heo HJ. The skin protecting effects of ethanolic extracts of eggplant peels. Korean J. Food Sci. Technol. 2012; 44(1): 94-99. DOI: 10.9721/KJFST.2012.44.1.094
  • Popova I, Sell B, Pillai SS, Kuhl J, Dandurand LM. High-Performance Liquid Chromatography–Mass Spectrometry Analysis of Glycoalkaloids from Underexploited Solanum Species and Their Acetylcholinesterase Inhibition Activity. Plants. 2022; 11(3): 269-287. DOI: 10.3390/plants11030269
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmakognozi
Bölüm Articles
Yazarlar

Ceylan Dönmez 0000-0002-8005-4425

Ufuk Koca Çalışkan 0000-0002-5216-7588

Nuraniye Eruygur 0000-0002-4674-7009

Cevahir Altınkaynak 0000-0003-0082-8521

Nalan Özdemir 0000-0002-8930-5198

Proje Numarası -
Erken Görünüm Tarihi 23 Mart 2024
Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 16 Şubat 2022
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 1

Kaynak Göster

APA Dönmez, C., Çalışkan, U. K., Eruygur, N., Altınkaynak, C., vd. (2024). Enhanced Enzyme Inhibitory Effects of the Nanohybrid Eggplant Extract: An Unusual Pharmaceutical Form for Medicinal Plant. Clinical and Experimental Health Sciences, 14(1), 32-38. https://doi.org/10.33808/clinexphealthsci.1074661
AMA Dönmez C, Çalışkan UK, Eruygur N, Altınkaynak C, Özdemir N. Enhanced Enzyme Inhibitory Effects of the Nanohybrid Eggplant Extract: An Unusual Pharmaceutical Form for Medicinal Plant. Clinical and Experimental Health Sciences. Mart 2024;14(1):32-38. doi:10.33808/clinexphealthsci.1074661
Chicago Dönmez, Ceylan, Ufuk Koca Çalışkan, Nuraniye Eruygur, Cevahir Altınkaynak, ve Nalan Özdemir. “Enhanced Enzyme Inhibitory Effects of the Nanohybrid Eggplant Extract: An Unusual Pharmaceutical Form for Medicinal Plant”. Clinical and Experimental Health Sciences 14, sy. 1 (Mart 2024): 32-38. https://doi.org/10.33808/clinexphealthsci.1074661.
EndNote Dönmez C, Çalışkan UK, Eruygur N, Altınkaynak C, Özdemir N (01 Mart 2024) Enhanced Enzyme Inhibitory Effects of the Nanohybrid Eggplant Extract: An Unusual Pharmaceutical Form for Medicinal Plant. Clinical and Experimental Health Sciences 14 1 32–38.
IEEE C. Dönmez, U. K. Çalışkan, N. Eruygur, C. Altınkaynak, ve N. Özdemir, “Enhanced Enzyme Inhibitory Effects of the Nanohybrid Eggplant Extract: An Unusual Pharmaceutical Form for Medicinal Plant”, Clinical and Experimental Health Sciences, c. 14, sy. 1, ss. 32–38, 2024, doi: 10.33808/clinexphealthsci.1074661.
ISNAD Dönmez, Ceylan vd. “Enhanced Enzyme Inhibitory Effects of the Nanohybrid Eggplant Extract: An Unusual Pharmaceutical Form for Medicinal Plant”. Clinical and Experimental Health Sciences 14/1 (Mart 2024), 32-38. https://doi.org/10.33808/clinexphealthsci.1074661.
JAMA Dönmez C, Çalışkan UK, Eruygur N, Altınkaynak C, Özdemir N. Enhanced Enzyme Inhibitory Effects of the Nanohybrid Eggplant Extract: An Unusual Pharmaceutical Form for Medicinal Plant. Clinical and Experimental Health Sciences. 2024;14:32–38.
MLA Dönmez, Ceylan vd. “Enhanced Enzyme Inhibitory Effects of the Nanohybrid Eggplant Extract: An Unusual Pharmaceutical Form for Medicinal Plant”. Clinical and Experimental Health Sciences, c. 14, sy. 1, 2024, ss. 32-38, doi:10.33808/clinexphealthsci.1074661.
Vancouver Dönmez C, Çalışkan UK, Eruygur N, Altınkaynak C, Özdemir N. Enhanced Enzyme Inhibitory Effects of the Nanohybrid Eggplant Extract: An Unusual Pharmaceutical Form for Medicinal Plant. Clinical and Experimental Health Sciences. 2024;14(1):32-8.

14639   14640