Araştırma Makalesi
BibTex RIS Kaynak Göster

Influence Of Low-Temperature Degradation On Phase Transformation And Biaxial Flexural Strength On Different High-Translucent 4Y-PSZ, 5Y-PSZ, 6Y-PSZ Monolithic Zirconia

Yıl 2024, Cilt: 14 Sayı: 1, 45 - 53, 28.03.2024
https://doi.org/10.33808/clinexphealthsci.1150128

Öz

Objective: This study aimed to investigate the effect of low-temperature degradation (LTD) in phase transformation and biaxial flexural strength of high-translucent yttria partially stabilized zirconia (Y-PSZ) and yttria tetragonal zirconia polycrystalline (3-YTZP).
Methods: A total of 120 new high-translucent 3-YTZP (NMS) and Y – PSZ (KST, KUT, NQ3MS) zirconia disc specimens were manufactured according to ISO 6872 for biaxial flexural strength (14 mm., 1.2 ± 0.02 mm). The specimens from each type of material were divided into 3 subgroups (n:30) according to the LTD in an autoclave at 134 C0 at 2 bar (n:10) (at 5, 20 hour (h)). Specimens without LTD served as the control. Data of the monoclinic phase changes (Xm) and flexural strength were analyzed using two-way ANOVA followed by post hoc MannWhitney U test. Weibull statistics were used to analyze strength reliability.
Results: LTD increased the monoclinic content significantly for NMS and slightly for the KST group. A monoclinic phase was not detected for KUT and NQ3MS groups. The biaxial flexural strength of the NMS group was affected significantly and decreased with an increase in the 20 h aging. For flexural strength values, there was no significant difference in aging times for each of the KST, KUT, and NQ3MS groups. Weibull analysis showed the highest characteristic strength for NMS (1412.9), KST (750.1), NQ3MS(790.5) and KUT (615.2) groups. The Weibull modulus (m) increased in the NMS, KUT, and NQ3MS groups compared with the control group and decreased in the KST group.
Conclusion: LTD caused a significant decrease in the biaxial flexural strength results of the NMS group but did not significantly affect the KST, KUT, and NQ3MS groups’ values.

Destekleyen Kurum

This study was supported by the grant no. 03/2020-06 from the Scientific Research Project of the Rectorship of Gazi University

Proje Numarası

03/2020-06

Kaynakça

  • Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014; 30(10):1195-1203. DOI:10.1016/j.dental.2014.08.375.
  • Zhang F, Vanmeensel K, Batuk M, Hadermann J, Inokoshi M, van Meerbeek B, Naert I, Vleugels J.Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomater 2015;16:215-222. DOI: 10.1016/j.actbio.2015.01.037. Epub 2015 Feb 4.
  • Hannink RH, Kelly PM, Muddle BC. Transformation toughening in zirconiacontaining ceramics. J Am Ceram Soc. 2000;83(3):461-487. DOI:10.1111/j.11512916. 2000.tb01221.x
  • Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999; 20(1):1-25. DOI: 10.1016/s0142-9612(98)00010-6
  • Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008;24(3):299-307. DOI: 10.1016/j. dental.2007.05.007
  • Hatanaka R, Polli GS, Adabo GL. The mechanical behavior of high-translucent monolithic zirconia after adjustment and finishing procedures and artificial aging. J Prosthet Dent. 2020;123(2):330-337. DOI: 10.1016/j.prosdent.2018.12.013
  • Pittayachawan P, McDonald A, Petrie A, Knowles JC. The biaxial flexural strength and fatigue property of Lava™ Y-TZP dental ceramic. Dent Mater. 2007;23(8):10181029. DOI: 10.1016/j.dental.2006.09.003
  • Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, Vleugels J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016;32(12):e327-e337. DOI: 10.1016/j.dental.2016.09.025
  • Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res. 2013;57(4):236-261. DOI: 10.1016/j.jpor.2013.09.001
  • Zhang F, Van Meerbeek B, Vleugels J. Importance of tetragonal phase in hightranslucent partially stabilized zirconia for dental restorations. Dent Mater. 2020;36(4):491-500. DOI: 10.1016/j.dental.2020.01.017
  • Khayat W, Chebib N, Finkelman M, Khayat S, Ali A. Effect of grinding and polishing on roughness and strength of zirconia J Prosthet Dent. 2018;119(4):626-631. DOI: 10.1016/j.prosdent.2017.04.003
  • Lawson S. Environmental degradation of zirconia ceramics. J Eur Ceram Soc. 1995;15(6): 485-502. DOI:10.1016/0955-2219(95)00035-S
  • Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res. 2007;37:1-32. DOI:10.1146/annurev.matsci.37.052.506.084250
  • Chevalier J, Cales B, Drouin JM. Low-temperature aging of Y-TZP ceramics. J Am Ceram Soc 1999;82(8):2150-2154. DOI:10.1111/j.1151-2916.1999.tb02055.x
  • Roy M, Whiteside L, Katerberg B, Steiger J. Phase transformation, roughness, and microhardness of artificially aged yttria-and magnesia-stabilized zirconia femoral heads. J Biomed Mater Res. A 2007;83(4):1096-1102. DOI: 10.1002/jbm.a.31438
  • Swab JJ. Low temperature degradation of Y-TZP materials. J Mater Sci. 1991;26(24):6706-6714. DOI:10.1007/bf00553696.
  • Payyapilly J, Butt D. Kinetics of hydrothermally induced transformation of yttria partially stabilized zirconia. J Nucl Mater. 2007;360(2):92-98. DOI:10.1016/j.jnucmat.2006.08.027
  • Sato T, Shimada M. Control of the tetragonal-to-monoclinic phase transformation of yttria partially stabilized zirconia in hot water. J Mater Sci. 1985;20(11):3988-3992. DOI:10.1007/BF00552389
  • Jue JF, Chen J, Virkar AV. Low-temperature aging of t′-zirconia: The role of microstructure on phase stability. J Am Ceram Soc. 1991;74(8):1811-1820. DOI:10.1111/j.1151-2916.1991.tb07793.x
  • Gremillard L, Chevalier J, Epicier T, Deville S, Fantozzi G. Modeling the aging kinetics of zirconia ceramics. J Eur Ceram Soc. 2004;24(13):3483-3489. DOI:10.1016/j.jeurceramsoc.2003.11.025
  • Li JF, Watanabe R. Phase transformation in Y2O3-partiallystabilized ZrO2 polycrystals of various grain sizes during lowtemperature aging in water. J Am Ceram Soc. 1998;81(10): 2687-2691. DOI:10.1111/j.1151-2916.1998.tb02677.x
  • Deville S, Chevalier J, Gremillard L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials 2006; 27(10):2186-2192. DOI:10.1016/j.biomaterials.2005.11.021
  • Chevalier J, Deville S, Münch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 2004;25(24):5539-5545. DOI:10.1016/j.biomaterials.2004.01.002
  • Zhang Y, Lawn B. Novel zirconia materials in dentistry. J Dent Res. 2018;97:140-147. DOI:10.1177/002.203.4517737483.
  • Mao L, Kaizer M, Zhao M, Guo B, Song Y, Zhang Y. Graded ultra-translucent zirconia (5Y-PSZ) for strength and functionalities. J Dent Res. 2018;97(11):1222-1228. DOI:10.1177/002.203.4518771287
  • Tong H, Tanaka CB, Kaizer MR, Zhang Y. Characterization of three commercial YTZP ceramics produced for their hightranslucency, high-strength and high-surface area. Ceram Int. 2016;42(1):1077-1085. DOI:10.1016/j.ceramint.2015.09.033
  • Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3):227-235. DOI: 10.11607/ijp.4244
  • Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N.Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int. 2017;48(5):369-380. DOI: 10.11607/ijp.4244.
  • Özcan M, Volpato CÂM, Fredel MC. Artificial aging of zirconium dioxide: an evaluation of current knowledge and clinical relevance. Curr Oral Health Rep. 2016;3(3):193-197. DOI 10.1007/s40496.016.0096-9
  • Flinn BD, deGroot DA, Mancl LA, Raigrodski AJ. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. J Prosthet Dent. 2012;108(4):223-230. DOI: 10.1016/S0022-3913(12)60166-8
  • Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, Hübsch C. Low temperature degradation of different zirconia ceramics for dental applications. Acta Biomater. 2012;8(3):1213-1220. DOI: 10.1016/j.actbio.2011.11.016
  • Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: An overview. Dent Mater. 2008;24(3):289-298. DOI: 10.1016/j.dental.2007.05.005
  • Cotič J, Jevnikar P, Kocjan A. Ageing kinetics and strength of airborne-particle abraded 3Y-TZP ceramics. Dent Mater. 2017;33(7):847-856. DOI: 10.1016/j.dental.2017.04.014
  • ISO 6872 (2008):Dentistry-Ceramic Materials. International Organization for Standardization, Geneva, Switzerland 2008.
  • Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc. 1972;55(6):303-305. DOI:10.1111/j.1151-2916.1972.tb11290.x
  • Pereira GK, Guilardi LF, Dapieve KS, Kleverlaan CJ, Rippe MP, Valandro LF. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. J Mech Behav Biomed Mater. 2018;85:57-65. DOI:10.1016/j.jmbbm.2018.05.029
  • KATANA Zirconia UTML, Kuraraynoritake.eu. Published [2022]. Accessed [20 July 2022] https://www.kuraraynoritake.eu/en/katana-zirconia-utml.
  • Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent. 2018;120(1):132-137. DOI: 10.1016/j.prosdent.2017.08.004
  • GmbH D. Nacera® Pearl Q³ Multi-Shade, Nacera. Published [2022]. Accessed [20 July 2022]. https://www.nacera-medical. com/de/loesungen/nacera-pearl-q3-multishade.
  • Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater. 2019;91:24-34. DOI: 10.1016/j.actbio.2019.04.043
  • Inokoshi M, Shimizu H, Nozaki K, Takagaki T, Yoshihara K, Nagaoka N, Zhang F, Vleugels J, Van Meerbeek B, Minakuchi S. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dent Mater. 2018;34(3):508518. DOI: 10.1016/j.dental.2017.12.008
  • Inokoshi M, Vanmeensel K, Zhang F, De Munck J, Eliades G, Minakuchi S, Naert I, Van Meerbeek B, Vleugels J. Aging resistance of surface-treated dental zirconia. Dent Mater. 2015;31(2):182-194. DOI:10.1016/j.dental.2014.11.018
  • Pereira G, Venturini A, Silvestri T, Dapieve K, Montagner A, Soares F, Valandro L. Low-temperature degradation of Y-TZP ceramics: A systematic review and metaanalysis. J Mech Behav Biomed Mater. 2015;55:151-163. DOI: 10.1016/j.jmbbm.2015.10.017
  • Zhuang Y, Zhu Z, Jiao T, Sun J. Effect of aging time and thickness on low temperature degradation of dental zirconia. J Prosthodont. 2019;28(1):e404-e410. DOI: 10.1111/jopr.12946
  • Pereira G, Amaral M, Cesar PF, Bottino MC, Kleverlaan CJ, Valandro LF. Effectof low-temperature aging on the mechanical behavior of ground Y-TZP. J Mech Behav Biomed Mater. 2015;45:183-192. DOI: 10.1016/j.jmbbm.2014.12.009
  • Kou W, Garbrielsson K, Borhani A, Carlborg M, Molin Thorén, M. The effects of artificial aging on high translucent zirconia. Biomater Investig Dent. 2019;6(1):54-60. DOI:10.1080/26415.275.2019.1684201
  • Reyes AR, Dennison JB, Powers JM, Sierraalta M,Yaman P. Translucency and flexural strength of translucent zirconia ceramics. J Prosthet Dent. 2021; DOI: 10.1016/j.prosdent.2021.06.019
  • Flinn BD, Raigrodski AJ, Mancl LA, Toivola R, Kuykendall T. Influence of aging on flexural strength of translucent zirconia for monolithic restorations. J Prosthet Dent. 2017;117(2):303-309. DOI:10.1016/j.prosdent.2016.06.010
  • Harada A, Shishido S, Barkarmo S, Inagaki R, Kanno T, Örtengren U, Egusa H, Nakamura K. Mechanical and microstructural properties of ultra-translucent dental zirconia ceramic stabilized with 5 mol% yttria. J Mech Behav Biomed Mater. 2020; 111:103974. DOI: 10.1016/j.jmbbm.2020.103974
  • Nakamura K, Harada A, Ono M, Shibasaki H, Kanno T, Niwano Y, Adolfsson E, Milleding P, Örtengren U. Effect of low-temperature degradation on the mechanical and microstructural properties of tooth-colored 3Y-TZP ceramics. J Mech Behav Biomed Mater. 2016;53:301-311. DOI: 10.1016/j.jmbbm.2015.08.031.
Yıl 2024, Cilt: 14 Sayı: 1, 45 - 53, 28.03.2024
https://doi.org/10.33808/clinexphealthsci.1150128

Öz

Proje Numarası

03/2020-06

Kaynakça

  • Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014; 30(10):1195-1203. DOI:10.1016/j.dental.2014.08.375.
  • Zhang F, Vanmeensel K, Batuk M, Hadermann J, Inokoshi M, van Meerbeek B, Naert I, Vleugels J.Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomater 2015;16:215-222. DOI: 10.1016/j.actbio.2015.01.037. Epub 2015 Feb 4.
  • Hannink RH, Kelly PM, Muddle BC. Transformation toughening in zirconiacontaining ceramics. J Am Ceram Soc. 2000;83(3):461-487. DOI:10.1111/j.11512916. 2000.tb01221.x
  • Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999; 20(1):1-25. DOI: 10.1016/s0142-9612(98)00010-6
  • Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008;24(3):299-307. DOI: 10.1016/j. dental.2007.05.007
  • Hatanaka R, Polli GS, Adabo GL. The mechanical behavior of high-translucent monolithic zirconia after adjustment and finishing procedures and artificial aging. J Prosthet Dent. 2020;123(2):330-337. DOI: 10.1016/j.prosdent.2018.12.013
  • Pittayachawan P, McDonald A, Petrie A, Knowles JC. The biaxial flexural strength and fatigue property of Lava™ Y-TZP dental ceramic. Dent Mater. 2007;23(8):10181029. DOI: 10.1016/j.dental.2006.09.003
  • Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, Vleugels J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016;32(12):e327-e337. DOI: 10.1016/j.dental.2016.09.025
  • Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res. 2013;57(4):236-261. DOI: 10.1016/j.jpor.2013.09.001
  • Zhang F, Van Meerbeek B, Vleugels J. Importance of tetragonal phase in hightranslucent partially stabilized zirconia for dental restorations. Dent Mater. 2020;36(4):491-500. DOI: 10.1016/j.dental.2020.01.017
  • Khayat W, Chebib N, Finkelman M, Khayat S, Ali A. Effect of grinding and polishing on roughness and strength of zirconia J Prosthet Dent. 2018;119(4):626-631. DOI: 10.1016/j.prosdent.2017.04.003
  • Lawson S. Environmental degradation of zirconia ceramics. J Eur Ceram Soc. 1995;15(6): 485-502. DOI:10.1016/0955-2219(95)00035-S
  • Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res. 2007;37:1-32. DOI:10.1146/annurev.matsci.37.052.506.084250
  • Chevalier J, Cales B, Drouin JM. Low-temperature aging of Y-TZP ceramics. J Am Ceram Soc 1999;82(8):2150-2154. DOI:10.1111/j.1151-2916.1999.tb02055.x
  • Roy M, Whiteside L, Katerberg B, Steiger J. Phase transformation, roughness, and microhardness of artificially aged yttria-and magnesia-stabilized zirconia femoral heads. J Biomed Mater Res. A 2007;83(4):1096-1102. DOI: 10.1002/jbm.a.31438
  • Swab JJ. Low temperature degradation of Y-TZP materials. J Mater Sci. 1991;26(24):6706-6714. DOI:10.1007/bf00553696.
  • Payyapilly J, Butt D. Kinetics of hydrothermally induced transformation of yttria partially stabilized zirconia. J Nucl Mater. 2007;360(2):92-98. DOI:10.1016/j.jnucmat.2006.08.027
  • Sato T, Shimada M. Control of the tetragonal-to-monoclinic phase transformation of yttria partially stabilized zirconia in hot water. J Mater Sci. 1985;20(11):3988-3992. DOI:10.1007/BF00552389
  • Jue JF, Chen J, Virkar AV. Low-temperature aging of t′-zirconia: The role of microstructure on phase stability. J Am Ceram Soc. 1991;74(8):1811-1820. DOI:10.1111/j.1151-2916.1991.tb07793.x
  • Gremillard L, Chevalier J, Epicier T, Deville S, Fantozzi G. Modeling the aging kinetics of zirconia ceramics. J Eur Ceram Soc. 2004;24(13):3483-3489. DOI:10.1016/j.jeurceramsoc.2003.11.025
  • Li JF, Watanabe R. Phase transformation in Y2O3-partiallystabilized ZrO2 polycrystals of various grain sizes during lowtemperature aging in water. J Am Ceram Soc. 1998;81(10): 2687-2691. DOI:10.1111/j.1151-2916.1998.tb02677.x
  • Deville S, Chevalier J, Gremillard L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials 2006; 27(10):2186-2192. DOI:10.1016/j.biomaterials.2005.11.021
  • Chevalier J, Deville S, Münch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 2004;25(24):5539-5545. DOI:10.1016/j.biomaterials.2004.01.002
  • Zhang Y, Lawn B. Novel zirconia materials in dentistry. J Dent Res. 2018;97:140-147. DOI:10.1177/002.203.4517737483.
  • Mao L, Kaizer M, Zhao M, Guo B, Song Y, Zhang Y. Graded ultra-translucent zirconia (5Y-PSZ) for strength and functionalities. J Dent Res. 2018;97(11):1222-1228. DOI:10.1177/002.203.4518771287
  • Tong H, Tanaka CB, Kaizer MR, Zhang Y. Characterization of three commercial YTZP ceramics produced for their hightranslucency, high-strength and high-surface area. Ceram Int. 2016;42(1):1077-1085. DOI:10.1016/j.ceramint.2015.09.033
  • Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3):227-235. DOI: 10.11607/ijp.4244
  • Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N.Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int. 2017;48(5):369-380. DOI: 10.11607/ijp.4244.
  • Özcan M, Volpato CÂM, Fredel MC. Artificial aging of zirconium dioxide: an evaluation of current knowledge and clinical relevance. Curr Oral Health Rep. 2016;3(3):193-197. DOI 10.1007/s40496.016.0096-9
  • Flinn BD, deGroot DA, Mancl LA, Raigrodski AJ. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. J Prosthet Dent. 2012;108(4):223-230. DOI: 10.1016/S0022-3913(12)60166-8
  • Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, Hübsch C. Low temperature degradation of different zirconia ceramics for dental applications. Acta Biomater. 2012;8(3):1213-1220. DOI: 10.1016/j.actbio.2011.11.016
  • Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: An overview. Dent Mater. 2008;24(3):289-298. DOI: 10.1016/j.dental.2007.05.005
  • Cotič J, Jevnikar P, Kocjan A. Ageing kinetics and strength of airborne-particle abraded 3Y-TZP ceramics. Dent Mater. 2017;33(7):847-856. DOI: 10.1016/j.dental.2017.04.014
  • ISO 6872 (2008):Dentistry-Ceramic Materials. International Organization for Standardization, Geneva, Switzerland 2008.
  • Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc. 1972;55(6):303-305. DOI:10.1111/j.1151-2916.1972.tb11290.x
  • Pereira GK, Guilardi LF, Dapieve KS, Kleverlaan CJ, Rippe MP, Valandro LF. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. J Mech Behav Biomed Mater. 2018;85:57-65. DOI:10.1016/j.jmbbm.2018.05.029
  • KATANA Zirconia UTML, Kuraraynoritake.eu. Published [2022]. Accessed [20 July 2022] https://www.kuraraynoritake.eu/en/katana-zirconia-utml.
  • Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent. 2018;120(1):132-137. DOI: 10.1016/j.prosdent.2017.08.004
  • GmbH D. Nacera® Pearl Q³ Multi-Shade, Nacera. Published [2022]. Accessed [20 July 2022]. https://www.nacera-medical. com/de/loesungen/nacera-pearl-q3-multishade.
  • Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater. 2019;91:24-34. DOI: 10.1016/j.actbio.2019.04.043
  • Inokoshi M, Shimizu H, Nozaki K, Takagaki T, Yoshihara K, Nagaoka N, Zhang F, Vleugels J, Van Meerbeek B, Minakuchi S. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dent Mater. 2018;34(3):508518. DOI: 10.1016/j.dental.2017.12.008
  • Inokoshi M, Vanmeensel K, Zhang F, De Munck J, Eliades G, Minakuchi S, Naert I, Van Meerbeek B, Vleugels J. Aging resistance of surface-treated dental zirconia. Dent Mater. 2015;31(2):182-194. DOI:10.1016/j.dental.2014.11.018
  • Pereira G, Venturini A, Silvestri T, Dapieve K, Montagner A, Soares F, Valandro L. Low-temperature degradation of Y-TZP ceramics: A systematic review and metaanalysis. J Mech Behav Biomed Mater. 2015;55:151-163. DOI: 10.1016/j.jmbbm.2015.10.017
  • Zhuang Y, Zhu Z, Jiao T, Sun J. Effect of aging time and thickness on low temperature degradation of dental zirconia. J Prosthodont. 2019;28(1):e404-e410. DOI: 10.1111/jopr.12946
  • Pereira G, Amaral M, Cesar PF, Bottino MC, Kleverlaan CJ, Valandro LF. Effectof low-temperature aging on the mechanical behavior of ground Y-TZP. J Mech Behav Biomed Mater. 2015;45:183-192. DOI: 10.1016/j.jmbbm.2014.12.009
  • Kou W, Garbrielsson K, Borhani A, Carlborg M, Molin Thorén, M. The effects of artificial aging on high translucent zirconia. Biomater Investig Dent. 2019;6(1):54-60. DOI:10.1080/26415.275.2019.1684201
  • Reyes AR, Dennison JB, Powers JM, Sierraalta M,Yaman P. Translucency and flexural strength of translucent zirconia ceramics. J Prosthet Dent. 2021; DOI: 10.1016/j.prosdent.2021.06.019
  • Flinn BD, Raigrodski AJ, Mancl LA, Toivola R, Kuykendall T. Influence of aging on flexural strength of translucent zirconia for monolithic restorations. J Prosthet Dent. 2017;117(2):303-309. DOI:10.1016/j.prosdent.2016.06.010
  • Harada A, Shishido S, Barkarmo S, Inagaki R, Kanno T, Örtengren U, Egusa H, Nakamura K. Mechanical and microstructural properties of ultra-translucent dental zirconia ceramic stabilized with 5 mol% yttria. J Mech Behav Biomed Mater. 2020; 111:103974. DOI: 10.1016/j.jmbbm.2020.103974
  • Nakamura K, Harada A, Ono M, Shibasaki H, Kanno T, Niwano Y, Adolfsson E, Milleding P, Örtengren U. Effect of low-temperature degradation on the mechanical and microstructural properties of tooth-colored 3Y-TZP ceramics. J Mech Behav Biomed Mater. 2016;53:301-311. DOI: 10.1016/j.jmbbm.2015.08.031.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Protez
Bölüm Articles
Yazarlar

Gülsüm Doğru 0000-0002-5803-9579

Handan Yılmaz 0000-0001-5809-7018

Proje Numarası 03/2020-06
Erken Görünüm Tarihi 23 Mart 2024
Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 28 Temmuz 2022
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 1

Kaynak Göster

APA Doğru, G., & Yılmaz, H. (2024). Influence Of Low-Temperature Degradation On Phase Transformation And Biaxial Flexural Strength On Different High-Translucent 4Y-PSZ, 5Y-PSZ, 6Y-PSZ Monolithic Zirconia. Clinical and Experimental Health Sciences, 14(1), 45-53. https://doi.org/10.33808/clinexphealthsci.1150128
AMA Doğru G, Yılmaz H. Influence Of Low-Temperature Degradation On Phase Transformation And Biaxial Flexural Strength On Different High-Translucent 4Y-PSZ, 5Y-PSZ, 6Y-PSZ Monolithic Zirconia. Clinical and Experimental Health Sciences. Mart 2024;14(1):45-53. doi:10.33808/clinexphealthsci.1150128
Chicago Doğru, Gülsüm, ve Handan Yılmaz. “Influence Of Low-Temperature Degradation On Phase Transformation And Biaxial Flexural Strength On Different High-Translucent 4Y-PSZ, 5Y-PSZ, 6Y-PSZ Monolithic Zirconia”. Clinical and Experimental Health Sciences 14, sy. 1 (Mart 2024): 45-53. https://doi.org/10.33808/clinexphealthsci.1150128.
EndNote Doğru G, Yılmaz H (01 Mart 2024) Influence Of Low-Temperature Degradation On Phase Transformation And Biaxial Flexural Strength On Different High-Translucent 4Y-PSZ, 5Y-PSZ, 6Y-PSZ Monolithic Zirconia. Clinical and Experimental Health Sciences 14 1 45–53.
IEEE G. Doğru ve H. Yılmaz, “Influence Of Low-Temperature Degradation On Phase Transformation And Biaxial Flexural Strength On Different High-Translucent 4Y-PSZ, 5Y-PSZ, 6Y-PSZ Monolithic Zirconia”, Clinical and Experimental Health Sciences, c. 14, sy. 1, ss. 45–53, 2024, doi: 10.33808/clinexphealthsci.1150128.
ISNAD Doğru, Gülsüm - Yılmaz, Handan. “Influence Of Low-Temperature Degradation On Phase Transformation And Biaxial Flexural Strength On Different High-Translucent 4Y-PSZ, 5Y-PSZ, 6Y-PSZ Monolithic Zirconia”. Clinical and Experimental Health Sciences 14/1 (Mart 2024), 45-53. https://doi.org/10.33808/clinexphealthsci.1150128.
JAMA Doğru G, Yılmaz H. Influence Of Low-Temperature Degradation On Phase Transformation And Biaxial Flexural Strength On Different High-Translucent 4Y-PSZ, 5Y-PSZ, 6Y-PSZ Monolithic Zirconia. Clinical and Experimental Health Sciences. 2024;14:45–53.
MLA Doğru, Gülsüm ve Handan Yılmaz. “Influence Of Low-Temperature Degradation On Phase Transformation And Biaxial Flexural Strength On Different High-Translucent 4Y-PSZ, 5Y-PSZ, 6Y-PSZ Monolithic Zirconia”. Clinical and Experimental Health Sciences, c. 14, sy. 1, 2024, ss. 45-53, doi:10.33808/clinexphealthsci.1150128.
Vancouver Doğru G, Yılmaz H. Influence Of Low-Temperature Degradation On Phase Transformation And Biaxial Flexural Strength On Different High-Translucent 4Y-PSZ, 5Y-PSZ, 6Y-PSZ Monolithic Zirconia. Clinical and Experimental Health Sciences. 2024;14(1):45-53.

14639   14640