Araştırma Makalesi
BibTex RIS Kaynak Göster

Characteristic properties of the parallel ruled surfaces with Darboux frame in Euclidean 3- space

Yıl 2016, Cilt: 1 Sayı: 1, 26 - 43, 01.01.2016

Öz

In this paper, the parallel ruled surfaces with Darboux frame are introduced in Euclidean 3-space. Then some characteristic
properties such as developability, striction point and distribution parameter of the parallel ruled surfaces with Darboux frame are given
in Euclidean 3-space. Then we obtain Steiner rotation vector of this kind of surfaces Euclidean 3-space. By using this rotation vector,
we compute pitch length and pitch angle of the parallel ruled surfaces with Darboux frame. 

Kaynakça

  • Aydemir, I. & Kasap, E. 2005. Timelike ruled surface with spacelike rulings in R. Kuwait Journal of Science & Engineering 32(2): 13-24.
  • C¸ oken, A.C., C¸ iftc¸i, ¨ U. & Ekici, C. 2008. On parallel timelike ruled surfaces with timelike rulings. Kuwait Journal of Science & Engineering 35(1): 21-31.
  • Darboux, G. 1896. Lec¸ons sur la theorie generale des surfaces I-II-III-IV., Gauthier-Villars, Paris.
  • Gray, A., Salamon, S. & Abbena, E. 2006. Modern differential geometry of curves and surfaces with Mathematica. Chapman and Hall/CRC.
  • Hacısalihoglu, H. H. 1983. Diferensiyel geometri. Inonu Univ. Fen Edebiyat Fak. Yay. No.2.
  • Hlavaty, V. 1945. Differentielle linien geometrie. Uitg P. Noorfhoff, Groningen.
  • Hoschek, J. 1973. Integral invarianten von regelflachen. Arch. Math, XXIV.
  • Karadag, H. B., Kılıc¸, E. & Karadag, M. 2014. On the developable ruled surfaces kinematically generated in Minkowski 3-Space. Kuwait Journal of Science 41(1): 21-34.
  • Kuhnel, W. 2002. Differential geometry, curves-surfaces-manifolds. American Mathematical Society. ¨
  • Muller, H. R. 1978. Verallgemeinerung einer formelvon Steiner. Abh. Braunschweig Wiss. Ges. 31:107-113, 1978.
  • O’Neill, B. 1996. Elementary differential geometry. Academic Press Inc, New York.
  • Ravani, T. & Ku S. 1991. Bertrand offsets of ruled surface and developable surface. Comp Aided Geom Design 23(2):145-152.
  • Savcı, Z. 2011. On parallel ruled Weingarten surfaces in 3-dimensional Euclidean space. (in Turkish) PhD Thesis, Eskisehir Osmangazi Univ. Grad. Sch. Nat. Sci., Eskisehir.
  • Senturk, G. Y. & Y ¨ uce, S. 2015. Characteristic properties of the ruled surface with Darboux frame in E3. Kuwait Journal of Science, 42(2):14-33.
  • Senturk, G. Y. & Y ¨ uce, S. 2015a. Properties of integral invariants of the involute-evolute offsets of ruled surfaces. Int. J. Pure Appl. Math. 102(4):757-768.
  • Unluturk, Y. & Ekici, C. 2014. Parallel surfaces satisying the properties of ruled surfaces in Minkowski 3-space. Global Journal of Science Frontier Research F, 14(1):78-95.
Yıl 2016, Cilt: 1 Sayı: 1, 26 - 43, 01.01.2016

Öz

Kaynakça

  • Aydemir, I. & Kasap, E. 2005. Timelike ruled surface with spacelike rulings in R. Kuwait Journal of Science & Engineering 32(2): 13-24.
  • C¸ oken, A.C., C¸ iftc¸i, ¨ U. & Ekici, C. 2008. On parallel timelike ruled surfaces with timelike rulings. Kuwait Journal of Science & Engineering 35(1): 21-31.
  • Darboux, G. 1896. Lec¸ons sur la theorie generale des surfaces I-II-III-IV., Gauthier-Villars, Paris.
  • Gray, A., Salamon, S. & Abbena, E. 2006. Modern differential geometry of curves and surfaces with Mathematica. Chapman and Hall/CRC.
  • Hacısalihoglu, H. H. 1983. Diferensiyel geometri. Inonu Univ. Fen Edebiyat Fak. Yay. No.2.
  • Hlavaty, V. 1945. Differentielle linien geometrie. Uitg P. Noorfhoff, Groningen.
  • Hoschek, J. 1973. Integral invarianten von regelflachen. Arch. Math, XXIV.
  • Karadag, H. B., Kılıc¸, E. & Karadag, M. 2014. On the developable ruled surfaces kinematically generated in Minkowski 3-Space. Kuwait Journal of Science 41(1): 21-34.
  • Kuhnel, W. 2002. Differential geometry, curves-surfaces-manifolds. American Mathematical Society. ¨
  • Muller, H. R. 1978. Verallgemeinerung einer formelvon Steiner. Abh. Braunschweig Wiss. Ges. 31:107-113, 1978.
  • O’Neill, B. 1996. Elementary differential geometry. Academic Press Inc, New York.
  • Ravani, T. & Ku S. 1991. Bertrand offsets of ruled surface and developable surface. Comp Aided Geom Design 23(2):145-152.
  • Savcı, Z. 2011. On parallel ruled Weingarten surfaces in 3-dimensional Euclidean space. (in Turkish) PhD Thesis, Eskisehir Osmangazi Univ. Grad. Sch. Nat. Sci., Eskisehir.
  • Senturk, G. Y. & Y ¨ uce, S. 2015. Characteristic properties of the ruled surface with Darboux frame in E3. Kuwait Journal of Science, 42(2):14-33.
  • Senturk, G. Y. & Y ¨ uce, S. 2015a. Properties of integral invariants of the involute-evolute offsets of ruled surfaces. Int. J. Pure Appl. Math. 102(4):757-768.
  • Unluturk, Y. & Ekici, C. 2014. Parallel surfaces satisying the properties of ruled surfaces in Minkowski 3-space. Global Journal of Science Frontier Research F, 14(1):78-95.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Bölüm Mathematics, Engineering and statistics
Yazarlar

Yasin Unluturk

Muradiye Cimdiker Bu kişi benim

Cumali Ekici Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 1 Sayı: 1

Kaynak Göster

APA Unluturk, Y., Cimdiker, M., & Ekici, C. (2016). Characteristic properties of the parallel ruled surfaces with Darboux frame in Euclidean 3- space. Communication in Mathematical Modeling and Applications, 1(1), 26-43.
AMA Unluturk Y, Cimdiker M, Ekici C. Characteristic properties of the parallel ruled surfaces with Darboux frame in Euclidean 3- space. CMMA. Ocak 2016;1(1):26-43.
Chicago Unluturk, Yasin, Muradiye Cimdiker, ve Cumali Ekici. “Characteristic Properties of the Parallel Ruled Surfaces With Darboux Frame in Euclidean 3- Space”. Communication in Mathematical Modeling and Applications 1, sy. 1 (Ocak 2016): 26-43.
EndNote Unluturk Y, Cimdiker M, Ekici C (01 Ocak 2016) Characteristic properties of the parallel ruled surfaces with Darboux frame in Euclidean 3- space. Communication in Mathematical Modeling and Applications 1 1 26–43.
IEEE Y. Unluturk, M. Cimdiker, ve C. Ekici, “Characteristic properties of the parallel ruled surfaces with Darboux frame in Euclidean 3- space”, CMMA, c. 1, sy. 1, ss. 26–43, 2016.
ISNAD Unluturk, Yasin vd. “Characteristic Properties of the Parallel Ruled Surfaces With Darboux Frame in Euclidean 3- Space”. Communication in Mathematical Modeling and Applications 1/1 (Ocak 2016), 26-43.
JAMA Unluturk Y, Cimdiker M, Ekici C. Characteristic properties of the parallel ruled surfaces with Darboux frame in Euclidean 3- space. CMMA. 2016;1:26–43.
MLA Unluturk, Yasin vd. “Characteristic Properties of the Parallel Ruled Surfaces With Darboux Frame in Euclidean 3- Space”. Communication in Mathematical Modeling and Applications, c. 1, sy. 1, 2016, ss. 26-43.
Vancouver Unluturk Y, Cimdiker M, Ekici C. Characteristic properties of the parallel ruled surfaces with Darboux frame in Euclidean 3- space. CMMA. 2016;1(1):26-43.