Derleme
BibTex RIS Kaynak Göster

Entomopathogenic Fungi and their Potential Role in the Sustainable Biological Control of Storage Pests

Yıl 2023, Cilt: 7 Sayı: 1, 90 - 97, 30.06.2023
https://doi.org/10.31594/commagene.1284354

Öz

Chemical control methods are mostly preferred in the control of pests that cause qualitative and quantitative losses in stored products instead of physical or biological control applications. The increasing consumer response to pesticide use and the insect resistance to many pesticides have reversed this situation and interest in biological control has increased. Entomopathogenic fungi (EPF) are biological control agents that are safer than synthetic pesticides. EPF play major roles in the natural regulation of many insect and mite species. Sustainable Biological Control with EPF could make a substantial contribution to the control of storage pests. When storage pests’ interactions are complex with EPF, we can notice both positive and negative impacts. EPF disrupts the host cuticle and proliferates as hyphae in the hemolymph, secreting toxins responsible for the death of host insects. Subsequent saprophytic growth leads to the production of fungal spores that can reinfect other hosts. For a successful infection, the fungus must be effective on the host's defense system. In order to determine the optimum conditions of myco-insecticides in biological control programs, specific research is required to understand the interaction between EPF, host insects, crops, and their environment. This review includes an overview of EPF, its host defense mechanism, pathogenicity, infection occurrence, the potential for use, and prospects. Furthermore, this review extensively investigates the contribution of EPF to biological control in sustainable agricultural practices.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Adler, C. (2010). Physical control of stored product insects. In: Reichmuth C, Schoeller M (ed) International European symposium on stored product protection: Stress on chemical products. Julius-Kuhn-Archive, Berlin, 33–36.
  • Altıkat, A., Turan, T., Ekmekyapar Torun, F., & Bingül, Z. (2009). Türkiye’de Pestisit Kullanımı ve Çevreye Olan Etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 40(2), 87-92.
  • Altimira, F., Arias-Aravena, M., Jian, L., Real, N., Correa, P.; González, C., …… & Tapia, E. (2022). Genomic and experimental analysis of the insecticidal factors secreted by the entomopathogenic fungus Beauveria pseudobassiana RGM 2184. Journal of Fungi, 8(3), 253. https://doi.org/10.3390/jof8030253
  • An, Z. (2004). Handbook of Industrial Mycology, Mycology, Marcel Dekker, New York. Berrocal, A., Navarrete, J., Oviedo, C., & Nickerson, K.W. (2012). Quorum sensing activity in Ophiostoma ulmi: Effects of fusel oils and branched chain amino acids on yeast-mycelial dimorphism. Journal of Applied Microbiology, 113, 126–134. https://doi.org/10.1111/j.1365-2672.2012.05317.x
  • Boucias, D., Liu, S., Meagher, R., & Baniszewski, J. (2016). Fungal dimorphism in the entomopathogenic fungus Metarhizium rileyi: Detection of an in vivo quorum-sensing system. Journal of Invertebrate Pathology, 136, 100–108. https://doi.org/10.1016/j.jip.2016.03.013
  • Butt, T.M., Coates, C.J., Dubovskiy, I.M., & Ratcliffe, N.A. (2016). Entomopathogenic fungi: New insights into host-pathogen interactions. Advances in Genetics, 94, 307-364. http://dx.doi.org/10.1016/bs.adgen.2016.01.006
  • Butt, T.M., Jackson, C., & Magan, N. (2001). Fungi as Biocontrol Agents, Progress, Problems and Potential, CABI Publishing, CAB International.
  • Castrillo, L.A., Roberts, D.W., & Vandenberg, J.D. (2005). The fungal past, present, and future: Germination , ramification, and reproduction. Journal of Invertebrate Pathology, 89, 46-56. https://doi.org/10.1016/j.jip.2005.06.005
  • Chen, W., Xie, W., Cai, W., Thaochan, N. & Hu, Q. (2021). Entomopathogenic Fungi Biodiversity in the Soil of Three Provinces Located in Southwest China and First Approach to Evaluate Their Biocontrol Potential. Journal of Fungi, 7, 984. https://doi.org/ 10.3390/jof7110984
  • Cho, E.M., Kirkland, B.H., Holder, D.J., & Keyhani, N.O. (2007). Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria bassiana (Cordyceps). Microbiology, 153(10), 3438–3447. https://doi.org/10.1099/mic.0.2007/008532-0
  • Cooper, D., & Eleftherianos, I. (2017). Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges. Frontiers in Immunology, 8, 539. https://doi.org/10.3389/fimmu.2017.00539
  • Çam, H., Gökçe, A., Yanar, Y., & Kadıoğlu, İ. (2002). Entomopathogenic fungus Beauveria bassiana (Bals.) Vuill.'s Potato Beetle, Leptinotarsa Decemlineata Say., its effect on. Turkey 5th Biological Control Congress, September 4-7, 2002, Atatürk University, Erzurum. 359-364.
  • Dara, S.K. (2019). Non-Entomopathogenic roles of entomopathogenic fungi in promoting plant health and growth. Insects, 10(9), 277. https://doi.org/10.3390%2Finsects10090277
  • de Oliveira Barbosa Bitencourt, R., Salcedo-Porras, N., Umaña-Diaz, C., Da Costa Angelo, I., & Lowenberger, C. (2020). Antifungal immune responses in mosquitoes (Diptera: Culicidae): A review. Journal of Invertebrate Pathology, 178, 107505. https://doi.org/10.1016/j.jip.2020.107505
  • Demirbağ, Z., Nalçacıoğlu, R., Katı, H., Demir, İ., Sezen, K., & Ertürk, O. (2008). Entomopatojenler ve Biyolojik Mücadele. Trabzon, Esen Ofset Matbaacılık., 325.
  • Eken, C., Tozlu, G., Dane, E., Coruh, S., & Demirci, E. (2006). Pathogenicity of Beauveria bassiana (Deuteromycotina: Hypomycetes) to larvae of the small poplar longhorn beetle, Saperda populnea (Coleoptera: Cerambycidae). Mycopathologia, 162, 69-71. https://doi.org/10.1007/s11046-006-0035-8
  • Elkhateeb, W.A., Mousa, K.M., Elnahasş, M.O., & Daba, G.M. (2021). Fungi against insects and contrariwise as biological control models. Egyptian Journal of Biology Pest Control, 31(1), 1–9. https://doi.org/10.1186/s41938-020-00360-8
  • Er, M.K., Tunaz, H., & Gokce, A. (2007). Pathogenicity of entomopathogenic fungi to Thaumetopoea pityocampa (Schiff.) (Lepidoptera : Thaumatopoeidae ) larvae in laboratory conditions. Journal of Pest Sciences, 80, 235-239. https://doi.org/10.1007/s10340-007-0177-6
  • Feng, P., Shang, Y., Cen, K., & Wang, C. (2015). Fungal biosynthesis of the bibenzoquinone oosporein to home insect immunity. Proceedings of the National Academy of Sciences USA, 112 (36), 11365–11370. https://doi.org/10.1073/pnas.1503200112
  • Fenibo, E.O., Ijoma, G.N., Matambo, T. (2021). Biopesticides in sustainable agriculture: acritical sustainable development driver governed by green chemistry principles. Frontiers in Sustainable Food Systems, 5, 619058. https://doi.org/10.3389/fsufs.2021.619058
  • Fernandes, E.K.K., Rangel, D.E.N., Moraes, A.M.L., Bittencourt, V.R.E.P., Roberts, D.W. (2008). Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. Journal of Invertebrate Pathology, 98, 69–78. https://doi.org/10.1016/j.jip.2007.10.011
  • Fields, P., Subramanyam, Bh., & Hulasare, R. (2012). Extreme temperatures. In: Hagstrum DW, Phillips TW, Cuperus G (ed) Stored Product Protection, Kansas State University, 351.
  • Flinn, P.W., & Scholler, M. (2012). Biological control: Insect pathogens, parasitoids, and predators In: Hagstrum DW, Phillips TW, Cuperus G (eds) Stored product protection. Q156. Kansas State University, Manhattan, KS, 203–212.
  • Gauthier, G.M. (2015). Dimorphism in Fungal Pathogens of Mammals, Plants, and Insects. PLOS Pathogens. 11(2), e1004608. https://doi.org/10.1371/journal.ppat.1004608
  • Goettel, M.S., Eilenberg, J., & Glare, T. (2005). Entomopathogenic fungi and their role in regulation of insect populations. In: Gilbert LI, Iatrou K, Gill SS (ed) Comprehensive Molecular Insect Science, Amsterdam: Elseiver, 361- 405.
  • Gökçe, A., & Er, M.K. (2005). Pathogenicity of Paecilomyces spp . to the glasshouse Whitefly, Trialeurodes vaporariorum, with some observations on the fungal infection process. Turkish Journal of Agriculture and Forestry, 29, 331–339.
  • Güneş, E., & Turmuş, E. (2020). Dünyada ve Türkiye’de Gıda Güvenliği/Güvencesinin Hububat Sektörü Yönüyle Değerlendirilmesi Evaluation of Grain Sector in Terms of Food Safety/Security in Turkey and the World. Türkiye Biyoetik Dergisi, 7(3), 124-143.
  • Hassaan, M.A., & El Nemr, A. (2020). Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egyptian Journal of Aquatic Research, 46, 207-220. http://dx.doi.org/10.1016/j.ejar.2020.08.007
  • Hultmark, D. (2003). Drosophila immunity: Paths and patterns. Current. Opinion in Immunology, 15, 12–19. http://dx.doi.org/10.1016/S0952-7915(02)00005-5
  • Humber, R.A. (2008). Evaluation of Entomopathogenicity in Fungi. Journal of Invertebrate Pathology, 98, 262-266. https://doi.org/10.1016/j.jip.2008.02.017
  • İnanlı, C., Yoldaş, Z., & Birgücü, A.K. (2012). Entomopatojen Funguslar Beauveria bassiana (Bals.) ve Metarhizium anisopliae (Metsch.)’nin Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)’nın Yumurta ve Larva Dönemlerine Etkisi. Ege Üniversitesi, Ziraat Fakültesi Dergisi, 49(3), 239-242. https://doi.org/10.20289/zfdergi.69694
  • Jackson, T.A., & Saville, D.J. (2000). Bioassays of replicating bacteria against soildwelling insect pest .In: Navon A, Ascher KRS (ed) Bioassays of entomopathogenic microbes and nematodes. CABI, New York, 73-94.
  • Jin, K., Peng, G., Liu, Y., & Xia, Y. (2015). The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Fungal Genetics and Biology, 77, 61–67. http://dx.doi.org/10.1016/j.fgb.2015.03.013
  • Kavallieratos, N.G., Athanassiou, C.G., Aountala, M., & Kontodimas, D.C. (2014). Evaluation of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Isaria fumosorosea for control of Sitophilus oryzae. Journal Food Protection, 77, 87–93. https://doi.org/10.1007/BF02981024
  • Kavallieratos, N.G., Athanassiou, C.G., Michalaki, M.P., Batta, Y.A., Rigatos H.A., Pashalidou, F.G., …………& Vayias, B.J. (2006). Effect of the combined use of Metarhizium anisopliae (Metschinkoff ) Sorokin and diatomaceous earth for the control of three stored-product beetle species. Crop Protection, 25, 1087–1094. https://doi.org/10.1016/j.cropro.2006.02.009
  • Kesin, Y., Karabörklü, S., & Altın, N. (2019). Bazı Yerel Entomopatojen Fungusların Toprak Koşullarındaki Etkinliklerinin Tenebrio molitor L. (Col.: Tenebrionidae) Larvaları Kullanılarak Araştırılması. Türkiye Teknoloji ve Uygulamalı Bilimler Dergisi, 2(1), 26-31.
  • Kidanu, S. (2020). Research and Application of Entomopathogenic Fungi as Pest Management Option: A Review. Journal of Environment and Earth Science, 10(3), 31–39. https://doi.org/10.7176/JEES/10-3-03
  • Klein, B.S., & Tebbets, B. (2007). Dimorphism and virulence in fungi. Current Opinion in Microbiology, 10, 314–319. https://doi.org/10.1016/j.mib.2007.04.002
  • Krishnan, N., & Kodrik, D. (2006). Antioxidant enzymes in Spodoptera littoralis (Boisduval) are they enhanced to protect gut tissues during oxidative stress. Journal of Insect Physiology, 5, 11-20. https://doi.org/10.1016/j.jinsphys.2005.08.009
  • Kumar D., & Kalita P. (2017). Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 6, 1-8. https://doi.org/10.3390/foods6010008
  • Langenfeld, A., Blond, A., Gueye, S., Herson, P., Bastien, N., Dupont, J. & Prado, S. (2011). Insecticidal Cyclodepsipeptides from Beauveria felina. Journal of Natural Products, 74(4), 825-830. https://doi.org/10.1021/np100890n
  • Langfelder, K., Streibel, M., Jahn, M., Haase, B.G., & Brakhage, A.A. (2003). Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genetics and Biology, 38(2), 143–158. https://doi.org/10.1016/s1087-1845(02)00526-1
  • Lengai, G.M.W., Muthomi, J.W., & Mbega, E.R. (2020). Phytochemical activity and role ofbotanical pesticides in pest management for sustainable agricultural crop production. Scientific. African, 7, e00239. https://doi.org/10.1016/j.sciaf.2019.e00239
  • Litwin, A., Nowak, M., & Różalska. S. (2020). Entomopathogenic fungi: unconventional applications. Reviews in Environmental Science and Bio / Technology, 19(1), 23–42. https://doi.org/10.1007/s11157-020-09525-1
  • Maimala, S., Tartar, A., Boucias, D. & Chandrapatya, A. (2002). Detection of the toxin Hirsutellin A from Hirsutella thompsonii. Journal of Invertebrate Pathology, 80(2) 112-26. https://doi.org/10.1016/S0022-2011(02)00123-4
  • Manivannan, S. (2015). Toxicity of phosphine on the developmental stages of rust-red flour beetle, Tribolium castaneum Herbst over a range of concentrations and exposures. Journal of Food Science Technology, 52, 6810–6815. https://doi.org/10.1007/s13197-015-1799-y
  • Mason, L.J., & McDonough, M. (2012). Biology, behavior, and ecology of stored grain and legume insects. In: Hagstrum DW, Phillips TW, Cuperus G (ed) Stored product protection. Q156. Kansas State University, Manhattan, KS, 7–20.
  • Meyling, N.V., & Eilenberg, J. (2007). Ecology of the Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae in Temperate Agroecosystems: Potential for conservation Biological Control. Biological Control, 43, 145-155. https://doi.org/10.1016/j.biocontrol.2007.07.007
  • Moore, D., Lord, J.C., & Smith, S.M. (2000). Pathogens. In: Subramanyam Bh, Hagstrum DW (ed) Alternatives to pesticides stored in product IPM. Kluwer academic Publishers, Dordrecht, 193–227.
  • Naruzawa, E.S., & Bernier, L. (2014). Control of yeast-mycelium dimorphism in vitro in Dutch elm disease fungi by manipulation of specific external stimuli. Fungal Biology, 118, 872–884. https://doi.org/10.1016/j.funbio.2014.07.006
  • Ortiz-Urquiza, A., & Keyhani, N.O. (2013). Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects, 4(3), 357–374. http://dx.doi.org/10.3390/insects4030357
  • Ortiz-Urquiza, A., Keyhani, N.O., & Quesada-Moraga, E. (2013). Culture conditions affect virulence and production of insect toxic proteins in the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, 23(10), 1199–1212. https://doi.org/10.1002/ps.1934
  • Pal, S., & Wu, L.P. (2019). Lessons from the Fly: Pattern Recognition in Drosophila melanogaster. In: Kishore U (ed) Target Pattern Recognition in Innate Immunity Springer: New York, NY, USA, 162–174.
  • Pedrini, N., Crespo, R., & Juárez, M.P. (2007). Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146(1-2), 124–137. http://dx.doi.org/10.1016/j.cbpc.2006.08.003
  • Quesada-Moraga, E., & Vey, A. (2003). Intra-specific Variation in Virulence and In Vitro Production of Macromolecular Toxins Active Against Locust Among Beauveria bassiana Strains and Effects of In Vivo and In Vitro Passage on These Factors. Biocontrol Science and Technology, 13, 323-340. https://doi.org/10.1080/0958315031000110346
  • Rajashekar, Y., Gunasekaran, N., & Shivanandappa, T. (2010). Insecticidal activity of the root extract of Decalepis hamiltonii against stored-product insect pests and its application in grain protection. Journal of Food Science Technology, 47(3), 310–314.
  • Roy, H.E., Steinkraus, D.C., Eilenberg, J.A.E., & Hajekand, J.K.P. (2006). Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annual Review of Entomology, 51, 331–57. http://dx.doi.org/10.1146/annurev.ento.51.110104.150941
  • Rumbos, C.I., & Athanassiou, C.G. (2017). Use of entomopathogenic fungi for the control of stored-product insects: can fungi protect durable commodities. Journal of Pest Science, 90, 839–854. https://doi.org/10.1007/s10340-017-0849-9
  • Sandhu, S.S., Sharma, A.K., Beniwal, V., Goel, G., Batra, P., Kumar, A., ............& Malhotra, S. (2012). Myco-Biocontrol of Insect Pests: Factors Involved, Mechanism, and Regulation. Journal of Pathogens, 9, 126819. https://doi.org/10.1155/2012/126819
  • Santi, L., Beys da Silva, W.O., Berger, M., Guimarães, J.A., Schrank, A., & Vainstein, M.H. (2010). Conidial surface proteins of Metarhizium anisopliae: Source of activities related with toxic effects, host penetration and pathogenesis. Toxicon, 55(4), 874–880. http://dx.doi.org/10.1016/j.toxicon.2009.12.012
  • Serebrov, V.V., Gerber, O.N., Malyarchuk, A.A., Martemyanov, V.V., Alekseev, A.A., Glupov, V.V. (2006). Effect of Entomopathogenic Fungi on Detoxification Enzyme Activity in Greater Wax moth Galleria mellonella L. (Lepidoptera, Pyralidae) and Role of Detoxification Enzymes in Development of Insect resistance to Entomopathogenic Fungi. Biology Bulletin, 33(6), 581-586. https://doi.org/10.1134/S1062359006060082
  • Sevim, A., Demir, I., Tanyeli, E., & Demirbag, Z. (2010a). Screening of Entomopathogenic Fungi against the european Spruce Bark Beetle, Dendroctonus micans (Coleoptera: Scolytidae). Biocontrol Science and Technology, 20, 3-11. http://dx.doi.org/10.1080/09583150903305737
  • Sevim, A., Demir, I., Höfte, M., Humber, R.A. & Demirbağ, Z. (2010b). isolation and characterization of entomopathogenic fungi from hazelnut-growing region of Turkey. Biocontrol, 55(2), 279-97. http://dx.doi.org/10.1007/s10526-009-9235-8
  • Sevim, A., Demir, İ., Sönmez, E., Kocaçevik, S., & Demirbağ, Z. (2013). Evaluation of entomopathogenic fungi against the sycamore lace bug, Corythucha ciliata (Say) (Hemiptera:Tingidae). Turkish Journal of Agriculture and Forestry, 37, 595-603. https://doi.org/10.3906/tar-1208-55
  • Shah, P.A., & Pell, J.K. (2003). Entomopathogenic Fungi as Biological Control Agents. Applied microbiology and Biotechnology, 61, 413-423. https://doi.org/10.1007/s00253-003-1240-8
  • Sharma, A., Sharma, S., & Yadav, P.K. (2023). Entomopathogenic fungi and their relevance in sustainable agriculture: A review. Cogent Food & Agriculture, 9, 1. http://dx.doi.org/10.1080/23311932.2023.2180857
  • Shin, T.Y., Lee, M.R., Park, S.E., Lee, S.J., Kim, W.J., & Kim, J.S. (2020). Pathogenesis-related genes of entomopathogenic fungi. Archives of Insect Biochemistry and Physiology, 105(4), e21747. https://doi.org/10.1002/arch.21747
  • Sinha, K.K., Choudhary, A.K., & Kumari, P. (2016). Ecofriendly Pest Management for Food Security Entomopathogenic Fungi. Ecofriendly Pest Management for Food Security, 475-505. https://doi.org/10.1016/B978-0-12-803265-7.00015-4
  • Skinner, M., Parker, B.L., & Kim, J.S. (2014). Role of Entomopathogenic Fungi in Integrated Pest Management, Integrated Pest Management: Current Concepts and ecological Perspective, 169–191.
  • Soliman N.A. (2020). Toxicological and biochemical Effects of Beauveria bassiana (Bals.) on Peach fruit fly, Bactrocera zonata (Saunders) Immature Stage. Journal of Plants Protection and Pathology, 11(11), 579–585. http://dx.doi.org/10.21608/jppp.2020.133805
  • Strand, M.R. (2008). The insect cellular immune response. Insect Science, 15, 1–14. https://doi. org/10.1111/j.1744-7917.2008.00183.x
  • Strasser, H., Vey, A., & Butt, T.M. (2000). Are There any Risks in Using Entomopathogenic Fungi for Pest Control, with Particular Reference to the Bioactive Metabolites of Metarhizium, Tolypocladium and Beauveria species. Biocontrol Science and Technology, 10, 717- 735. http://dx.doi.org/10.1080/09583150020011690
  • Tanyeli, E., Sevim, A., Demirbag, Z., Eroglu, M., & Demir, I. (2010). Isolation and virulence of entomopathogenic fungi against the great spruce bark beetle, Dendroctonus micans (Kugelann) (Coleoptera: Scolytidae). Biocontrol Science and Technology, 20, 695–701. http://dx.doi.org/10.1080/09583151003717219 Wang, H., Peng, H., Li, W., Cheng, P., & Gong, M. (2021). The Toxins of Beauveria bassiana and the Strategies to improve their Virulence to Insects. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.705343
  • Whiting, P.W. (2005). Genetic studies on the Mediterranean flour‐moth, Ephestia kühniella Zeller. Journal of Experimental Zoology, 28(3), 413–445. https://doi.org/10.1002/jez.1400280304
  • Wu, G., Jiang S., & Miyata, T. (2004). Effects of Synergists on Toxicity of Six Insecticides in Parasitoid Diaeretiella rapae (Hymenoptera: Aphididae). Journal of Economics Entomology, 97, 2057-2066. http://dx.doi.org/10.1603/0022-0493-97.6.2057
  • Xie, X.Q., Wang, J., Huang, B.F., Ying, S.H., & Feng, M.G. (2010). A new manganese superoxide dismutase identified from Beauveria bassiana enhances virulence and stress tolerance when overexpressed in the fungal pathogen. Applied microbiology and Biotechnology, 86 (5), 1543–1553. https://doi.org/10.1007/s00253-010-2437-2
  • Ye, C., Song, Z.T., Wu, W., Zhang, N.U., Saba, L. Xing, L., & X, Su. (2021). Endocuticle is involved in caste differentiation of the lower termite. Current Zoology, 67(5), 489–499. http://dx.doi.org/10.1093/cz/zoab005 Zettler, J.L., & Arthur, F.H. (2000). Chemical control of stored product insects with fumigants and residual treatments. Crop Protection, 19, 577–582.
  • Zhang, L., Fasoyin, O.E., Molnár, I., & Xu, Y. (2020). Secondary metabolites from hypocrealean entomopathogenic fungi: Novel bioactive compounds. Natural Product Reports, 37, 1181–1206. http://dx.doi.org/10.1039/c001459c
  • Zibaee, A., & Malagoli, D. (2014). Immune response of Chilo suppressalis Walker (Lepidoptera: Crambidae) larvae to different entomopathogenic fungi. Bulletin of Entomological Research, 104(2), 155–163. https://doi.org/10.1017/s0007485313000588
  • Zimmermann, G. (2007a). Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, 17, 553-596. http://dx.doi.org/10.1080/09583150701309006
  • Zimmermann, G. (2007b). Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, 17, 879-920. https://doi.org/10.1080/09583150701593963

Entomopatojenik Mantarlar ve Depo Zararlilarinin Sürdürülebilir Biyolojik Kontrolündeki Potansiyel Rolleri

Yıl 2023, Cilt: 7 Sayı: 1, 90 - 97, 30.06.2023
https://doi.org/10.31594/commagene.1284354

Öz

Depolanan ürünlerde kalitatif ve kantitatif kayıplara neden olan zararlıların kontrolünde fiziksel veya biyolojik mücadele uygulamaları yerine çoğunlukla kimyasal mücadele yöntemleri tercih edilmektedir. Pestisit kullanımına karşı artan tüketici tepkisi ve birçok pestisite karşı böceklerin direnci bu durumu tersine çevirmiş ve biyolojik mücadeleye olan ilgi artmıştır. Entomopatojenik mantarlar (EPF), sentetik pestisitlerden daha güvenli biyolojik kontrol ajanlarıdır. EPF, birçok böcek ve akar türünün doğal regülasyonunda önemli roller oynar. Entomopatojenik mantarlarla Sürdürülebilir Biyolojik Kontrol, depolama zararlılarının kontrolüne önemli bir katkı sağlayabilir. Depolama zararlıları etkileşimleri entomopatojenik mantarlarla karmaşık olduğunda, hem olumlu hem de olumsuz etkiler görülebilir. EPF konak kütikülünü bozar ve hemolenfte hif olarak çoğalarak konak böceklerin ölümünden sorumlu toksinleri salgılar. Saprofitik büyüme ile, diğer konakları yeniden enfekte edebilen mantar sporlarının üretimine yol açar. Başarılı bir enfeksiyon için mantarın konağın savunma sistemi üzerinde etkili olması gerekir. Biyolojik kontrol programlarında miko-böcek öldürücülerin optimum koşullarını belirlemek için EPF, konak böcekler, ekinler ve bunların çevreleri arasındaki etkileşimi anlamak için özel araştırmalar gereklidir. Bu inceleme, EPF'ye, konakçı savunma mekanizmasına, patojenitesine, enfeksiyon oluşumuna, kullanım potansiyeline ve beklentilerine genel bir bakış içerir. Bu derlemede ayrıca EPF kullanımının sürdürülebilir tarım uygulamalarında biyolojik mücadeleye katkısı ayrıntılı olarak incelenmiştir.

Proje Numarası

-

Kaynakça

  • Adler, C. (2010). Physical control of stored product insects. In: Reichmuth C, Schoeller M (ed) International European symposium on stored product protection: Stress on chemical products. Julius-Kuhn-Archive, Berlin, 33–36.
  • Altıkat, A., Turan, T., Ekmekyapar Torun, F., & Bingül, Z. (2009). Türkiye’de Pestisit Kullanımı ve Çevreye Olan Etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 40(2), 87-92.
  • Altimira, F., Arias-Aravena, M., Jian, L., Real, N., Correa, P.; González, C., …… & Tapia, E. (2022). Genomic and experimental analysis of the insecticidal factors secreted by the entomopathogenic fungus Beauveria pseudobassiana RGM 2184. Journal of Fungi, 8(3), 253. https://doi.org/10.3390/jof8030253
  • An, Z. (2004). Handbook of Industrial Mycology, Mycology, Marcel Dekker, New York. Berrocal, A., Navarrete, J., Oviedo, C., & Nickerson, K.W. (2012). Quorum sensing activity in Ophiostoma ulmi: Effects of fusel oils and branched chain amino acids on yeast-mycelial dimorphism. Journal of Applied Microbiology, 113, 126–134. https://doi.org/10.1111/j.1365-2672.2012.05317.x
  • Boucias, D., Liu, S., Meagher, R., & Baniszewski, J. (2016). Fungal dimorphism in the entomopathogenic fungus Metarhizium rileyi: Detection of an in vivo quorum-sensing system. Journal of Invertebrate Pathology, 136, 100–108. https://doi.org/10.1016/j.jip.2016.03.013
  • Butt, T.M., Coates, C.J., Dubovskiy, I.M., & Ratcliffe, N.A. (2016). Entomopathogenic fungi: New insights into host-pathogen interactions. Advances in Genetics, 94, 307-364. http://dx.doi.org/10.1016/bs.adgen.2016.01.006
  • Butt, T.M., Jackson, C., & Magan, N. (2001). Fungi as Biocontrol Agents, Progress, Problems and Potential, CABI Publishing, CAB International.
  • Castrillo, L.A., Roberts, D.W., & Vandenberg, J.D. (2005). The fungal past, present, and future: Germination , ramification, and reproduction. Journal of Invertebrate Pathology, 89, 46-56. https://doi.org/10.1016/j.jip.2005.06.005
  • Chen, W., Xie, W., Cai, W., Thaochan, N. & Hu, Q. (2021). Entomopathogenic Fungi Biodiversity in the Soil of Three Provinces Located in Southwest China and First Approach to Evaluate Their Biocontrol Potential. Journal of Fungi, 7, 984. https://doi.org/ 10.3390/jof7110984
  • Cho, E.M., Kirkland, B.H., Holder, D.J., & Keyhani, N.O. (2007). Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria bassiana (Cordyceps). Microbiology, 153(10), 3438–3447. https://doi.org/10.1099/mic.0.2007/008532-0
  • Cooper, D., & Eleftherianos, I. (2017). Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges. Frontiers in Immunology, 8, 539. https://doi.org/10.3389/fimmu.2017.00539
  • Çam, H., Gökçe, A., Yanar, Y., & Kadıoğlu, İ. (2002). Entomopathogenic fungus Beauveria bassiana (Bals.) Vuill.'s Potato Beetle, Leptinotarsa Decemlineata Say., its effect on. Turkey 5th Biological Control Congress, September 4-7, 2002, Atatürk University, Erzurum. 359-364.
  • Dara, S.K. (2019). Non-Entomopathogenic roles of entomopathogenic fungi in promoting plant health and growth. Insects, 10(9), 277. https://doi.org/10.3390%2Finsects10090277
  • de Oliveira Barbosa Bitencourt, R., Salcedo-Porras, N., Umaña-Diaz, C., Da Costa Angelo, I., & Lowenberger, C. (2020). Antifungal immune responses in mosquitoes (Diptera: Culicidae): A review. Journal of Invertebrate Pathology, 178, 107505. https://doi.org/10.1016/j.jip.2020.107505
  • Demirbağ, Z., Nalçacıoğlu, R., Katı, H., Demir, İ., Sezen, K., & Ertürk, O. (2008). Entomopatojenler ve Biyolojik Mücadele. Trabzon, Esen Ofset Matbaacılık., 325.
  • Eken, C., Tozlu, G., Dane, E., Coruh, S., & Demirci, E. (2006). Pathogenicity of Beauveria bassiana (Deuteromycotina: Hypomycetes) to larvae of the small poplar longhorn beetle, Saperda populnea (Coleoptera: Cerambycidae). Mycopathologia, 162, 69-71. https://doi.org/10.1007/s11046-006-0035-8
  • Elkhateeb, W.A., Mousa, K.M., Elnahasş, M.O., & Daba, G.M. (2021). Fungi against insects and contrariwise as biological control models. Egyptian Journal of Biology Pest Control, 31(1), 1–9. https://doi.org/10.1186/s41938-020-00360-8
  • Er, M.K., Tunaz, H., & Gokce, A. (2007). Pathogenicity of entomopathogenic fungi to Thaumetopoea pityocampa (Schiff.) (Lepidoptera : Thaumatopoeidae ) larvae in laboratory conditions. Journal of Pest Sciences, 80, 235-239. https://doi.org/10.1007/s10340-007-0177-6
  • Feng, P., Shang, Y., Cen, K., & Wang, C. (2015). Fungal biosynthesis of the bibenzoquinone oosporein to home insect immunity. Proceedings of the National Academy of Sciences USA, 112 (36), 11365–11370. https://doi.org/10.1073/pnas.1503200112
  • Fenibo, E.O., Ijoma, G.N., Matambo, T. (2021). Biopesticides in sustainable agriculture: acritical sustainable development driver governed by green chemistry principles. Frontiers in Sustainable Food Systems, 5, 619058. https://doi.org/10.3389/fsufs.2021.619058
  • Fernandes, E.K.K., Rangel, D.E.N., Moraes, A.M.L., Bittencourt, V.R.E.P., Roberts, D.W. (2008). Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. Journal of Invertebrate Pathology, 98, 69–78. https://doi.org/10.1016/j.jip.2007.10.011
  • Fields, P., Subramanyam, Bh., & Hulasare, R. (2012). Extreme temperatures. In: Hagstrum DW, Phillips TW, Cuperus G (ed) Stored Product Protection, Kansas State University, 351.
  • Flinn, P.W., & Scholler, M. (2012). Biological control: Insect pathogens, parasitoids, and predators In: Hagstrum DW, Phillips TW, Cuperus G (eds) Stored product protection. Q156. Kansas State University, Manhattan, KS, 203–212.
  • Gauthier, G.M. (2015). Dimorphism in Fungal Pathogens of Mammals, Plants, and Insects. PLOS Pathogens. 11(2), e1004608. https://doi.org/10.1371/journal.ppat.1004608
  • Goettel, M.S., Eilenberg, J., & Glare, T. (2005). Entomopathogenic fungi and their role in regulation of insect populations. In: Gilbert LI, Iatrou K, Gill SS (ed) Comprehensive Molecular Insect Science, Amsterdam: Elseiver, 361- 405.
  • Gökçe, A., & Er, M.K. (2005). Pathogenicity of Paecilomyces spp . to the glasshouse Whitefly, Trialeurodes vaporariorum, with some observations on the fungal infection process. Turkish Journal of Agriculture and Forestry, 29, 331–339.
  • Güneş, E., & Turmuş, E. (2020). Dünyada ve Türkiye’de Gıda Güvenliği/Güvencesinin Hububat Sektörü Yönüyle Değerlendirilmesi Evaluation of Grain Sector in Terms of Food Safety/Security in Turkey and the World. Türkiye Biyoetik Dergisi, 7(3), 124-143.
  • Hassaan, M.A., & El Nemr, A. (2020). Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egyptian Journal of Aquatic Research, 46, 207-220. http://dx.doi.org/10.1016/j.ejar.2020.08.007
  • Hultmark, D. (2003). Drosophila immunity: Paths and patterns. Current. Opinion in Immunology, 15, 12–19. http://dx.doi.org/10.1016/S0952-7915(02)00005-5
  • Humber, R.A. (2008). Evaluation of Entomopathogenicity in Fungi. Journal of Invertebrate Pathology, 98, 262-266. https://doi.org/10.1016/j.jip.2008.02.017
  • İnanlı, C., Yoldaş, Z., & Birgücü, A.K. (2012). Entomopatojen Funguslar Beauveria bassiana (Bals.) ve Metarhizium anisopliae (Metsch.)’nin Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)’nın Yumurta ve Larva Dönemlerine Etkisi. Ege Üniversitesi, Ziraat Fakültesi Dergisi, 49(3), 239-242. https://doi.org/10.20289/zfdergi.69694
  • Jackson, T.A., & Saville, D.J. (2000). Bioassays of replicating bacteria against soildwelling insect pest .In: Navon A, Ascher KRS (ed) Bioassays of entomopathogenic microbes and nematodes. CABI, New York, 73-94.
  • Jin, K., Peng, G., Liu, Y., & Xia, Y. (2015). The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Fungal Genetics and Biology, 77, 61–67. http://dx.doi.org/10.1016/j.fgb.2015.03.013
  • Kavallieratos, N.G., Athanassiou, C.G., Aountala, M., & Kontodimas, D.C. (2014). Evaluation of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Isaria fumosorosea for control of Sitophilus oryzae. Journal Food Protection, 77, 87–93. https://doi.org/10.1007/BF02981024
  • Kavallieratos, N.G., Athanassiou, C.G., Michalaki, M.P., Batta, Y.A., Rigatos H.A., Pashalidou, F.G., …………& Vayias, B.J. (2006). Effect of the combined use of Metarhizium anisopliae (Metschinkoff ) Sorokin and diatomaceous earth for the control of three stored-product beetle species. Crop Protection, 25, 1087–1094. https://doi.org/10.1016/j.cropro.2006.02.009
  • Kesin, Y., Karabörklü, S., & Altın, N. (2019). Bazı Yerel Entomopatojen Fungusların Toprak Koşullarındaki Etkinliklerinin Tenebrio molitor L. (Col.: Tenebrionidae) Larvaları Kullanılarak Araştırılması. Türkiye Teknoloji ve Uygulamalı Bilimler Dergisi, 2(1), 26-31.
  • Kidanu, S. (2020). Research and Application of Entomopathogenic Fungi as Pest Management Option: A Review. Journal of Environment and Earth Science, 10(3), 31–39. https://doi.org/10.7176/JEES/10-3-03
  • Klein, B.S., & Tebbets, B. (2007). Dimorphism and virulence in fungi. Current Opinion in Microbiology, 10, 314–319. https://doi.org/10.1016/j.mib.2007.04.002
  • Krishnan, N., & Kodrik, D. (2006). Antioxidant enzymes in Spodoptera littoralis (Boisduval) are they enhanced to protect gut tissues during oxidative stress. Journal of Insect Physiology, 5, 11-20. https://doi.org/10.1016/j.jinsphys.2005.08.009
  • Kumar D., & Kalita P. (2017). Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 6, 1-8. https://doi.org/10.3390/foods6010008
  • Langenfeld, A., Blond, A., Gueye, S., Herson, P., Bastien, N., Dupont, J. & Prado, S. (2011). Insecticidal Cyclodepsipeptides from Beauveria felina. Journal of Natural Products, 74(4), 825-830. https://doi.org/10.1021/np100890n
  • Langfelder, K., Streibel, M., Jahn, M., Haase, B.G., & Brakhage, A.A. (2003). Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genetics and Biology, 38(2), 143–158. https://doi.org/10.1016/s1087-1845(02)00526-1
  • Lengai, G.M.W., Muthomi, J.W., & Mbega, E.R. (2020). Phytochemical activity and role ofbotanical pesticides in pest management for sustainable agricultural crop production. Scientific. African, 7, e00239. https://doi.org/10.1016/j.sciaf.2019.e00239
  • Litwin, A., Nowak, M., & Różalska. S. (2020). Entomopathogenic fungi: unconventional applications. Reviews in Environmental Science and Bio / Technology, 19(1), 23–42. https://doi.org/10.1007/s11157-020-09525-1
  • Maimala, S., Tartar, A., Boucias, D. & Chandrapatya, A. (2002). Detection of the toxin Hirsutellin A from Hirsutella thompsonii. Journal of Invertebrate Pathology, 80(2) 112-26. https://doi.org/10.1016/S0022-2011(02)00123-4
  • Manivannan, S. (2015). Toxicity of phosphine on the developmental stages of rust-red flour beetle, Tribolium castaneum Herbst over a range of concentrations and exposures. Journal of Food Science Technology, 52, 6810–6815. https://doi.org/10.1007/s13197-015-1799-y
  • Mason, L.J., & McDonough, M. (2012). Biology, behavior, and ecology of stored grain and legume insects. In: Hagstrum DW, Phillips TW, Cuperus G (ed) Stored product protection. Q156. Kansas State University, Manhattan, KS, 7–20.
  • Meyling, N.V., & Eilenberg, J. (2007). Ecology of the Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae in Temperate Agroecosystems: Potential for conservation Biological Control. Biological Control, 43, 145-155. https://doi.org/10.1016/j.biocontrol.2007.07.007
  • Moore, D., Lord, J.C., & Smith, S.M. (2000). Pathogens. In: Subramanyam Bh, Hagstrum DW (ed) Alternatives to pesticides stored in product IPM. Kluwer academic Publishers, Dordrecht, 193–227.
  • Naruzawa, E.S., & Bernier, L. (2014). Control of yeast-mycelium dimorphism in vitro in Dutch elm disease fungi by manipulation of specific external stimuli. Fungal Biology, 118, 872–884. https://doi.org/10.1016/j.funbio.2014.07.006
  • Ortiz-Urquiza, A., & Keyhani, N.O. (2013). Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects, 4(3), 357–374. http://dx.doi.org/10.3390/insects4030357
  • Ortiz-Urquiza, A., Keyhani, N.O., & Quesada-Moraga, E. (2013). Culture conditions affect virulence and production of insect toxic proteins in the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, 23(10), 1199–1212. https://doi.org/10.1002/ps.1934
  • Pal, S., & Wu, L.P. (2019). Lessons from the Fly: Pattern Recognition in Drosophila melanogaster. In: Kishore U (ed) Target Pattern Recognition in Innate Immunity Springer: New York, NY, USA, 162–174.
  • Pedrini, N., Crespo, R., & Juárez, M.P. (2007). Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146(1-2), 124–137. http://dx.doi.org/10.1016/j.cbpc.2006.08.003
  • Quesada-Moraga, E., & Vey, A. (2003). Intra-specific Variation in Virulence and In Vitro Production of Macromolecular Toxins Active Against Locust Among Beauveria bassiana Strains and Effects of In Vivo and In Vitro Passage on These Factors. Biocontrol Science and Technology, 13, 323-340. https://doi.org/10.1080/0958315031000110346
  • Rajashekar, Y., Gunasekaran, N., & Shivanandappa, T. (2010). Insecticidal activity of the root extract of Decalepis hamiltonii against stored-product insect pests and its application in grain protection. Journal of Food Science Technology, 47(3), 310–314.
  • Roy, H.E., Steinkraus, D.C., Eilenberg, J.A.E., & Hajekand, J.K.P. (2006). Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annual Review of Entomology, 51, 331–57. http://dx.doi.org/10.1146/annurev.ento.51.110104.150941
  • Rumbos, C.I., & Athanassiou, C.G. (2017). Use of entomopathogenic fungi for the control of stored-product insects: can fungi protect durable commodities. Journal of Pest Science, 90, 839–854. https://doi.org/10.1007/s10340-017-0849-9
  • Sandhu, S.S., Sharma, A.K., Beniwal, V., Goel, G., Batra, P., Kumar, A., ............& Malhotra, S. (2012). Myco-Biocontrol of Insect Pests: Factors Involved, Mechanism, and Regulation. Journal of Pathogens, 9, 126819. https://doi.org/10.1155/2012/126819
  • Santi, L., Beys da Silva, W.O., Berger, M., Guimarães, J.A., Schrank, A., & Vainstein, M.H. (2010). Conidial surface proteins of Metarhizium anisopliae: Source of activities related with toxic effects, host penetration and pathogenesis. Toxicon, 55(4), 874–880. http://dx.doi.org/10.1016/j.toxicon.2009.12.012
  • Serebrov, V.V., Gerber, O.N., Malyarchuk, A.A., Martemyanov, V.V., Alekseev, A.A., Glupov, V.V. (2006). Effect of Entomopathogenic Fungi on Detoxification Enzyme Activity in Greater Wax moth Galleria mellonella L. (Lepidoptera, Pyralidae) and Role of Detoxification Enzymes in Development of Insect resistance to Entomopathogenic Fungi. Biology Bulletin, 33(6), 581-586. https://doi.org/10.1134/S1062359006060082
  • Sevim, A., Demir, I., Tanyeli, E., & Demirbag, Z. (2010a). Screening of Entomopathogenic Fungi against the european Spruce Bark Beetle, Dendroctonus micans (Coleoptera: Scolytidae). Biocontrol Science and Technology, 20, 3-11. http://dx.doi.org/10.1080/09583150903305737
  • Sevim, A., Demir, I., Höfte, M., Humber, R.A. & Demirbağ, Z. (2010b). isolation and characterization of entomopathogenic fungi from hazelnut-growing region of Turkey. Biocontrol, 55(2), 279-97. http://dx.doi.org/10.1007/s10526-009-9235-8
  • Sevim, A., Demir, İ., Sönmez, E., Kocaçevik, S., & Demirbağ, Z. (2013). Evaluation of entomopathogenic fungi against the sycamore lace bug, Corythucha ciliata (Say) (Hemiptera:Tingidae). Turkish Journal of Agriculture and Forestry, 37, 595-603. https://doi.org/10.3906/tar-1208-55
  • Shah, P.A., & Pell, J.K. (2003). Entomopathogenic Fungi as Biological Control Agents. Applied microbiology and Biotechnology, 61, 413-423. https://doi.org/10.1007/s00253-003-1240-8
  • Sharma, A., Sharma, S., & Yadav, P.K. (2023). Entomopathogenic fungi and their relevance in sustainable agriculture: A review. Cogent Food & Agriculture, 9, 1. http://dx.doi.org/10.1080/23311932.2023.2180857
  • Shin, T.Y., Lee, M.R., Park, S.E., Lee, S.J., Kim, W.J., & Kim, J.S. (2020). Pathogenesis-related genes of entomopathogenic fungi. Archives of Insect Biochemistry and Physiology, 105(4), e21747. https://doi.org/10.1002/arch.21747
  • Sinha, K.K., Choudhary, A.K., & Kumari, P. (2016). Ecofriendly Pest Management for Food Security Entomopathogenic Fungi. Ecofriendly Pest Management for Food Security, 475-505. https://doi.org/10.1016/B978-0-12-803265-7.00015-4
  • Skinner, M., Parker, B.L., & Kim, J.S. (2014). Role of Entomopathogenic Fungi in Integrated Pest Management, Integrated Pest Management: Current Concepts and ecological Perspective, 169–191.
  • Soliman N.A. (2020). Toxicological and biochemical Effects of Beauveria bassiana (Bals.) on Peach fruit fly, Bactrocera zonata (Saunders) Immature Stage. Journal of Plants Protection and Pathology, 11(11), 579–585. http://dx.doi.org/10.21608/jppp.2020.133805
  • Strand, M.R. (2008). The insect cellular immune response. Insect Science, 15, 1–14. https://doi. org/10.1111/j.1744-7917.2008.00183.x
  • Strasser, H., Vey, A., & Butt, T.M. (2000). Are There any Risks in Using Entomopathogenic Fungi for Pest Control, with Particular Reference to the Bioactive Metabolites of Metarhizium, Tolypocladium and Beauveria species. Biocontrol Science and Technology, 10, 717- 735. http://dx.doi.org/10.1080/09583150020011690
  • Tanyeli, E., Sevim, A., Demirbag, Z., Eroglu, M., & Demir, I. (2010). Isolation and virulence of entomopathogenic fungi against the great spruce bark beetle, Dendroctonus micans (Kugelann) (Coleoptera: Scolytidae). Biocontrol Science and Technology, 20, 695–701. http://dx.doi.org/10.1080/09583151003717219 Wang, H., Peng, H., Li, W., Cheng, P., & Gong, M. (2021). The Toxins of Beauveria bassiana and the Strategies to improve their Virulence to Insects. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.705343
  • Whiting, P.W. (2005). Genetic studies on the Mediterranean flour‐moth, Ephestia kühniella Zeller. Journal of Experimental Zoology, 28(3), 413–445. https://doi.org/10.1002/jez.1400280304
  • Wu, G., Jiang S., & Miyata, T. (2004). Effects of Synergists on Toxicity of Six Insecticides in Parasitoid Diaeretiella rapae (Hymenoptera: Aphididae). Journal of Economics Entomology, 97, 2057-2066. http://dx.doi.org/10.1603/0022-0493-97.6.2057
  • Xie, X.Q., Wang, J., Huang, B.F., Ying, S.H., & Feng, M.G. (2010). A new manganese superoxide dismutase identified from Beauveria bassiana enhances virulence and stress tolerance when overexpressed in the fungal pathogen. Applied microbiology and Biotechnology, 86 (5), 1543–1553. https://doi.org/10.1007/s00253-010-2437-2
  • Ye, C., Song, Z.T., Wu, W., Zhang, N.U., Saba, L. Xing, L., & X, Su. (2021). Endocuticle is involved in caste differentiation of the lower termite. Current Zoology, 67(5), 489–499. http://dx.doi.org/10.1093/cz/zoab005 Zettler, J.L., & Arthur, F.H. (2000). Chemical control of stored product insects with fumigants and residual treatments. Crop Protection, 19, 577–582.
  • Zhang, L., Fasoyin, O.E., Molnár, I., & Xu, Y. (2020). Secondary metabolites from hypocrealean entomopathogenic fungi: Novel bioactive compounds. Natural Product Reports, 37, 1181–1206. http://dx.doi.org/10.1039/c001459c
  • Zibaee, A., & Malagoli, D. (2014). Immune response of Chilo suppressalis Walker (Lepidoptera: Crambidae) larvae to different entomopathogenic fungi. Bulletin of Entomological Research, 104(2), 155–163. https://doi.org/10.1017/s0007485313000588
  • Zimmermann, G. (2007a). Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, 17, 553-596. http://dx.doi.org/10.1080/09583150701309006
  • Zimmermann, G. (2007b). Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, 17, 879-920. https://doi.org/10.1080/09583150701593963
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Derleme Makaleler
Yazarlar

Pınar Güner 0000-0001-6922-7009

Tülin Aşkun 0000-0002-2700-1965

Aylin Er 0000-0002-8108-8950

Proje Numarası -
Erken Görünüm Tarihi 12 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 18 Nisan 2023
Kabul Tarihi 7 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 7 Sayı: 1

Kaynak Göster

APA Güner, P., Aşkun, T., & Er, A. (2023). Entomopathogenic Fungi and their Potential Role in the Sustainable Biological Control of Storage Pests. Commagene Journal of Biology, 7(1), 90-97. https://doi.org/10.31594/commagene.1284354
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.