Araştırma Makalesi
BibTex RIS Kaynak Göster

BANKACILIK SEKTÖRÜNDE TAKİPTEKİ KREDİLER AÇISINDAN YAKINSAMA: AVRUPA BİRLİĞİ ÜLKELERİ

Yıl 2024, Cilt: 22 Sayı: 53, 1186 - 1204, 22.07.2024
https://doi.org/10.35408/comuybd.1450736

Öz

Bankalar sermaye ihtiyacı olan taraflara fon transferi sağlamada önemli bir fonksiyon icra etmekte olup bankacılık sisteminin istikrarı ekonomik büyüme ve kalkınma açısından hayati öneme sahiptir. Gelişen finansal piyasalar ve dünya bankacılık sisteminin entegrasyonuyla birlikte bankacılık sisteminin istikrarı, ülkesel ve bölgesel bir hedef ve/veya sorun olmaktan öte tüm dünya ekonomilerini ilgilendirir hale gelmiştir. Tüm bu çerçevede Avrupa Birliği ülkelerindeki bankacılık sisteminin istikrarının ele alınması oldukça önemli veriler sunabilecektir. Bu çerçevede bu çalışmanın amacı Avrupa Birliği ülkelerinde (üye ve aday) ekonomik entegrasyon süreci çerçevesinde birlik üyesi ülkelerde faaliyet gösteren bankaların takipteki kredi oranı oranları baz alınarak birlik üyesi ülkeler arasındaki yakınsamanın ortaya konulmasıdır. Bunun için Avrupa birliği ülkelerinde 1997-2022 dönemi takipteki kredi oranları kullanılarak Payne et al. (2022) tarafından geliştirilen Result of Updated Panic LM Test (Dummy Breaks, Factor) prosedürü ile analizler yapılmıştır. Yapılan analizler sonucunda Belçika, Danimarka, Estonya, Fransa, Almanya, İtalya, Letonya, Hollanda, Kuzey Makedonya, Polonya, İspanya, Türkiye arasında çeşitli önem seviyelerinde yakınsama tespit edilmiştir. Ayrıca kırılma dönemleri değerlendirildiğinde bankacılık sektöründe yapılan düzenlemelerin yakınsama ilişkilerini etkilediği gözlenmiştir. Çalışmanın bankacılık sektörü standartları konusunda karar alıcılara, ülke politika yapıcılarına ve bankacılık sektörüne önemli katkıları olacağı düşünülmektedir. Ayrıca takipteki krediler (TGA) baz alınarak yakınsamayı ele alan bildiğimiz kadarıyla ilk çalışma olması hasebiyle literatüre de önemli katkılar sunmaktadır.

Kaynakça

  • Apergis, N. (2022). Convergence in non-performing loans across EU banks: The role of Covid-19. Cogent Economics & Finance, 10(1), 2024952. https://doi.org/10.1080/23322039.2021.2024952
  • Ari, A., Chen, S., & Ratnovski, L. (2021). The dynamics of non-performing loans during banking crises: A new database with post-COVID-19 implications. Journal of Banking & Finance, 133, 106140. https://doi.org/10.1016/j.jbankfin.2021.106140
  • Bai, J., & Carrion-I-Silvestre, J. L. (2009). Structural Changes, Common Stochastic Trends, and Unit Roots in Panel Data. The Review of Economic Studies, 76(2), 471–501. https://doi.org/10.1111/j.1467-937X.2008.00530.x
  • Bai, J., & Ng, S. (2002). Determining the Number of Factors in Approximate Factor Models. Econometrica, 70(1), 191–221. https://doi.org/10.1111/1468-0262.00273
  • Bai, J., & Ng, S. (2004). A PANIC Attack on Unit Roots and Cointegration. Econometrica, 72(4), 1127–1177. https://doi.org/10.1111/j.1468-0262.2004.00528.x
  • Begg, L. (2021). The European Union and regional economic integration (The EU System in Perspective PE 689.369). EPRS | European Parliamentary Research Service. https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/689369/EPRS_BRI(2021)689369_EN.pdf
  • Berger, A. N., & DeYoung, R. (1997). Problem loans and cost efficiency in commercial banks. Journal of Banking & Finance, 21(6), 849–870. https://doi.org/10.1016/S0378-4266(97)00003-4
  • Breusch, T. S., & Pagan, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies, 47(1), 239–253. https://doi.org/10.2307/2297111
  • Choudhary, M. A., & Jain, A. K. (2021). Corporate stress and bank nonperforming loans: Evidence from Pakistan. Journal of Banking & Finance, 133, 106234. https://doi.org/10.1016/j.jbankfin.2021.106234
  • Efthyvoulou, G., & Yildirim, C. (2014). Market power in CEE banking sectors and the impact of the global financial crisis. JOURNAL OF BANKING & FINANCE, 40, 11–27. https://doi.org/10.1016/j.jbankfin.2013.11.010
  • EU. (2000). EU motto. European UnioN. https://european-union.europa.eu
  • EU. (2024). Founding agreements. European UnioN. https://european-union.europa.eu/principles-countries-history/principles-and-values/founding-agreements_en
  • Faber, A., & Wessels, W. (2006). Revisited Background Paper on the Project’s Theoretical and Methodological Framework Including Sets of Expectations and Yardsticks with Indicators [A common theoretical and methodological framework for EU-CONSENT Paper for the Kick-off Meeting]. EU-CONSENT. https://www.eliamep.gr/wp-content/uploads/en/2008/10/faber_widening_deepening.pdf
  • Karadima, M., & Louri, H. (2020). Bank Competition and Credit Risk in Euro Area Banking: Fragmentation and Convergence Dynamics. JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 13(3), 57. https://doi.org/10.3390/jrfm13030057
  • Kazak, H. (2022). The Case of Turkey in Terms of COVID- 19 and Non- Performing Loans (NPL). In Digital Transformation and New Approaches in Trade, Economics, Finance and Banking (pp. 97–133). Peter Lang GmbH.
  • Kazak, H. (2024). Avrupa Birliği ülkeleri arasında banka sermaye yapısı açısından yakınsama. Nevşehir Hacı Bektaş Veli Üniversitesi SBE Dergisi, 14(2), Article 2. https://doi.org/10.30783/nevsosbilen.1464698
  • Konstantakis, K. N., Michaelides, P. G., & Vouldis, A. T. (2016). Non performing loans (NPLs) in a crisis economy: Long-run equilibrium analysis with a real time VEC model for Greece (2001–2015). Physica A: Statistical Mechanics and Its Applications, 451, 149–161. https://doi.org/10.1016/j.physa.2015.12.163
  • Kryzanowski, L., Liu, J., & Zhang, J. (2023). Effect of COVID-19 on non-performing loans in China. Finance Research Letters, 52, 103372. https://doi.org/10.1016/j.frl.2022.103372
  • Lamers, M., Present, T., & Vander Vennet, R. (2022). European bank profitability: The great convergence? Finance Research Letters, 49, 103088. https://doi.org/10.1016/j.frl.2022.103088
  • Lee, J., & Strazicich, M. C. (2003). Minimum Lagrange Multiplier Unit Root Test with Two Structural Breaks. The Review of Economics and Statistics, 85(4), 1082–1089. https://doi.org/10.1162/003465303772815961
  • Matousek, R., Rughoo, A., Sarantis, N., & Assaf, A. G. (2015). Bank performance and convergence during the financial crisis: Evidence from the ‘old’ European Union and Eurozone. Journal Of Banking & Finance, 52, 208–216. https://doi.org/10.1016/j.jbankfin.2014.08.012
  • Matthews, K., & Zhang, N. (2010). Bank productivity in China 1997-2007: Measurement and convergence. China Economic Review, 21(4), 617–628. https://doi.org/10.1016/j.chieco.2010.06.004
  • Nazlioglu, S., & Lee, J. (2020). Response surface estimates of the LM unit root tests. Economics Letters, 192, 109136. https://doi.org/10.1016/j.econlet.2020.109136
  • Nazlioglu, S., Lee, J., Tieslau, M., Karul, C., & You, Y. (2022). Smooth structural changes and common factors in nonstationary panel data: An analysis of healthcare expenditures†. Econometric Reviews, 42(1), 78–97. https://doi.org/10.1080/07474938.2022.2156740
  • Partovi, E., & Matousek, R. (2019). Bank efficiency and non-performing loans: Evidence from Turkey. Research in International Business and Finance, 48, 287–309. https://doi.org/10.1016/j.ribaf.2018.12.011
  • Payne, J. E., Lee, J., Islam, Md. T., & Nazlioglu, S. (2022). Stochastic convergence of per capita greenhouse gas emissions: New unit root tests with breaks and a factor structure. Energy Economics, 113, 106201. https://doi.org/10.1016/j.eneco.2022.106201
  • Pesaran, M. H. (2004). General Diagnostic Tests for Cross Section Dependence in Panels (SSRN Scholarly Paper 572504). https://doi.org/10.2139/ssrn.572504
  • Pesaran, M. H., Ullah, A., & Yamagata, T. (2008). A bias‐adjusted LM test of error cross‐section independence. The Econometrics Journal, 11(1), 105–127. https://doi.org/10.1111/j.1368-423X.2007.00227.x
  • Phung, Q. T., Van Vu, H., & Tran, H. P. (2022). Do non-performing loans impact bank efficiency? Finance Research Letters, 46, 102393. https://doi.org/10.1016/j.frl.2021.102393
  • Quah, D. T. (1996). Twin Peaks: Growth and Convergence in Models of Distribution Dynamics. The Economic Journal, 106(437), 1045–1055. https://doi.org/10.2307/2235377
  • Solarin, S. A., Erdogan, S., & Pata, U. K. (2023). Convergence of Income Inequality in OECD Countries Since 1870: A Multi-Method Approach with Structural Changes. Social Indicators Research, 166(3), 601–626. https://doi.org/10.1007/s11205-023-03080-2
  • Takahashi, F. L., & Vasconcelos, M. R. (2024). Bank efficiency and undesirable output: An analysis of non-performing loans in the Brazilian banking sector. Finance Research Letters, 59, 104651. https://doi.org/10.1016/j.frl.2023.104651
  • Tinbergen, J. (1965). International economic integration. Elsevier. https://repub.eur.nl/pub/15343/SECOND%20PART.PDF

CONVERGENCE IN TERMS OF NON-PERFORMING LOANS IN THE BANKING SECTOR: EUROPEAN UNION COUNTRIES

Yıl 2024, Cilt: 22 Sayı: 53, 1186 - 1204, 22.07.2024
https://doi.org/10.35408/comuybd.1450736

Öz

Banks perform an important function in transferring funds to parties in need of capital and the stability of the banking system is vital for economic growth and development. With the developing financial markets and the integration of the world banking system, the stability of the banking system has become a concern for all economies of the world rather than being a national or regional target and/or problem. In this framework, analyzing the stability of the banking system in the European Union countries can provide important data. In this framework, the aim of this study is to reveal the convergence among the member countries of the European Union (member and candidate) based on the non-performing loan ratios of banks operating in the member countries within the framework of the economic integration process. For this purpose, analyses were conducted with the Result of Updated Panic LM Test (Dummy Breaks, Factor) procedure developed by Payne et al. (2022) using the non-performing loan ratios for the period 1997-2022 in the European Union countries. As a result of the analyses, convergence at various levels of significance was found between Belgium, Denmark, Estonia, France, Germany, Italy, Latvia, the Netherlands, North Macedonia, Poland, Spain and Türkiye. Moreover, when the break periods are evaluated, it is observed that the regulations in the banking sector affect the convergence relations. The study is expected to make important contributions to decision makers, national policy makers and the banking sector in terms of banking sector standards. It also contributes to the literature as it is the first study that deals with convergence based on non-performing loans (NPLs).

Kaynakça

  • Apergis, N. (2022). Convergence in non-performing loans across EU banks: The role of Covid-19. Cogent Economics & Finance, 10(1), 2024952. https://doi.org/10.1080/23322039.2021.2024952
  • Ari, A., Chen, S., & Ratnovski, L. (2021). The dynamics of non-performing loans during banking crises: A new database with post-COVID-19 implications. Journal of Banking & Finance, 133, 106140. https://doi.org/10.1016/j.jbankfin.2021.106140
  • Bai, J., & Carrion-I-Silvestre, J. L. (2009). Structural Changes, Common Stochastic Trends, and Unit Roots in Panel Data. The Review of Economic Studies, 76(2), 471–501. https://doi.org/10.1111/j.1467-937X.2008.00530.x
  • Bai, J., & Ng, S. (2002). Determining the Number of Factors in Approximate Factor Models. Econometrica, 70(1), 191–221. https://doi.org/10.1111/1468-0262.00273
  • Bai, J., & Ng, S. (2004). A PANIC Attack on Unit Roots and Cointegration. Econometrica, 72(4), 1127–1177. https://doi.org/10.1111/j.1468-0262.2004.00528.x
  • Begg, L. (2021). The European Union and regional economic integration (The EU System in Perspective PE 689.369). EPRS | European Parliamentary Research Service. https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/689369/EPRS_BRI(2021)689369_EN.pdf
  • Berger, A. N., & DeYoung, R. (1997). Problem loans and cost efficiency in commercial banks. Journal of Banking & Finance, 21(6), 849–870. https://doi.org/10.1016/S0378-4266(97)00003-4
  • Breusch, T. S., & Pagan, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies, 47(1), 239–253. https://doi.org/10.2307/2297111
  • Choudhary, M. A., & Jain, A. K. (2021). Corporate stress and bank nonperforming loans: Evidence from Pakistan. Journal of Banking & Finance, 133, 106234. https://doi.org/10.1016/j.jbankfin.2021.106234
  • Efthyvoulou, G., & Yildirim, C. (2014). Market power in CEE banking sectors and the impact of the global financial crisis. JOURNAL OF BANKING & FINANCE, 40, 11–27. https://doi.org/10.1016/j.jbankfin.2013.11.010
  • EU. (2000). EU motto. European UnioN. https://european-union.europa.eu
  • EU. (2024). Founding agreements. European UnioN. https://european-union.europa.eu/principles-countries-history/principles-and-values/founding-agreements_en
  • Faber, A., & Wessels, W. (2006). Revisited Background Paper on the Project’s Theoretical and Methodological Framework Including Sets of Expectations and Yardsticks with Indicators [A common theoretical and methodological framework for EU-CONSENT Paper for the Kick-off Meeting]. EU-CONSENT. https://www.eliamep.gr/wp-content/uploads/en/2008/10/faber_widening_deepening.pdf
  • Karadima, M., & Louri, H. (2020). Bank Competition and Credit Risk in Euro Area Banking: Fragmentation and Convergence Dynamics. JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 13(3), 57. https://doi.org/10.3390/jrfm13030057
  • Kazak, H. (2022). The Case of Turkey in Terms of COVID- 19 and Non- Performing Loans (NPL). In Digital Transformation and New Approaches in Trade, Economics, Finance and Banking (pp. 97–133). Peter Lang GmbH.
  • Kazak, H. (2024). Avrupa Birliği ülkeleri arasında banka sermaye yapısı açısından yakınsama. Nevşehir Hacı Bektaş Veli Üniversitesi SBE Dergisi, 14(2), Article 2. https://doi.org/10.30783/nevsosbilen.1464698
  • Konstantakis, K. N., Michaelides, P. G., & Vouldis, A. T. (2016). Non performing loans (NPLs) in a crisis economy: Long-run equilibrium analysis with a real time VEC model for Greece (2001–2015). Physica A: Statistical Mechanics and Its Applications, 451, 149–161. https://doi.org/10.1016/j.physa.2015.12.163
  • Kryzanowski, L., Liu, J., & Zhang, J. (2023). Effect of COVID-19 on non-performing loans in China. Finance Research Letters, 52, 103372. https://doi.org/10.1016/j.frl.2022.103372
  • Lamers, M., Present, T., & Vander Vennet, R. (2022). European bank profitability: The great convergence? Finance Research Letters, 49, 103088. https://doi.org/10.1016/j.frl.2022.103088
  • Lee, J., & Strazicich, M. C. (2003). Minimum Lagrange Multiplier Unit Root Test with Two Structural Breaks. The Review of Economics and Statistics, 85(4), 1082–1089. https://doi.org/10.1162/003465303772815961
  • Matousek, R., Rughoo, A., Sarantis, N., & Assaf, A. G. (2015). Bank performance and convergence during the financial crisis: Evidence from the ‘old’ European Union and Eurozone. Journal Of Banking & Finance, 52, 208–216. https://doi.org/10.1016/j.jbankfin.2014.08.012
  • Matthews, K., & Zhang, N. (2010). Bank productivity in China 1997-2007: Measurement and convergence. China Economic Review, 21(4), 617–628. https://doi.org/10.1016/j.chieco.2010.06.004
  • Nazlioglu, S., & Lee, J. (2020). Response surface estimates of the LM unit root tests. Economics Letters, 192, 109136. https://doi.org/10.1016/j.econlet.2020.109136
  • Nazlioglu, S., Lee, J., Tieslau, M., Karul, C., & You, Y. (2022). Smooth structural changes and common factors in nonstationary panel data: An analysis of healthcare expenditures†. Econometric Reviews, 42(1), 78–97. https://doi.org/10.1080/07474938.2022.2156740
  • Partovi, E., & Matousek, R. (2019). Bank efficiency and non-performing loans: Evidence from Turkey. Research in International Business and Finance, 48, 287–309. https://doi.org/10.1016/j.ribaf.2018.12.011
  • Payne, J. E., Lee, J., Islam, Md. T., & Nazlioglu, S. (2022). Stochastic convergence of per capita greenhouse gas emissions: New unit root tests with breaks and a factor structure. Energy Economics, 113, 106201. https://doi.org/10.1016/j.eneco.2022.106201
  • Pesaran, M. H. (2004). General Diagnostic Tests for Cross Section Dependence in Panels (SSRN Scholarly Paper 572504). https://doi.org/10.2139/ssrn.572504
  • Pesaran, M. H., Ullah, A., & Yamagata, T. (2008). A bias‐adjusted LM test of error cross‐section independence. The Econometrics Journal, 11(1), 105–127. https://doi.org/10.1111/j.1368-423X.2007.00227.x
  • Phung, Q. T., Van Vu, H., & Tran, H. P. (2022). Do non-performing loans impact bank efficiency? Finance Research Letters, 46, 102393. https://doi.org/10.1016/j.frl.2021.102393
  • Quah, D. T. (1996). Twin Peaks: Growth and Convergence in Models of Distribution Dynamics. The Economic Journal, 106(437), 1045–1055. https://doi.org/10.2307/2235377
  • Solarin, S. A., Erdogan, S., & Pata, U. K. (2023). Convergence of Income Inequality in OECD Countries Since 1870: A Multi-Method Approach with Structural Changes. Social Indicators Research, 166(3), 601–626. https://doi.org/10.1007/s11205-023-03080-2
  • Takahashi, F. L., & Vasconcelos, M. R. (2024). Bank efficiency and undesirable output: An analysis of non-performing loans in the Brazilian banking sector. Finance Research Letters, 59, 104651. https://doi.org/10.1016/j.frl.2023.104651
  • Tinbergen, J. (1965). International economic integration. Elsevier. https://repub.eur.nl/pub/15343/SECOND%20PART.PDF
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Panel Veri Analizi
Bölüm Araştırma Makalesi
Yazarlar

Hasan Kazak 0000-0003-0699-5371

Yayımlanma Tarihi 22 Temmuz 2024
Gönderilme Tarihi 11 Mart 2024
Kabul Tarihi 12 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 22 Sayı: 53

Kaynak Göster

APA Kazak, H. (2024). CONVERGENCE IN TERMS OF NON-PERFORMING LOANS IN THE BANKING SECTOR: EUROPEAN UNION COUNTRIES. Yönetim Bilimleri Dergisi, 22(53), 1186-1204. https://doi.org/10.35408/comuybd.1450736

Sayın Araştırmacı;

Dergimize gelen yoğun talep nedeniyle Ekim 2024 sayısı için öngörülen kontenjan dolmuştur, gönderilen makaleler ilerleyen sayılarda değerlendirilebilecektir. Bu hususa dikkat ederek yeni makale gönderimi yapmanızı rica ederiz.

Yönetim Bilimler Dergisi Özel Sayı Çağrısı
Yönetim Bilimleri Dergisi 2024 yılının Eylül ayında “Endüstri 4.0 ve Dijitalleşmenin Sosyal Bilimlerde Yansımaları” başlıklı bir özel sayı yayınlayacaktır.
Çanakkale Onsekiz Mart Üniversitesi Biga İktisadi ve İdari Bilimler Fakültesi tarafından 5-6 Temmuz 2024 tarihlerinde çevrimiçi olarak düzenlenecek olan 4. Uluslararası Sosyal Bilimler Konferansı’nda sunum gerçekleştiren yazarların dergi için ücret yatırmasına gerek olmayıp, dekont yerine Konferans Katılım Belgesini sisteme yüklemeleri yeterli olacaktır.
Gönderilen makalelerin derginin yazım kurallarına uygun olması ve DergiPark sistemi üzerinden sisteme yüklenmesi gerekmektedir. Özel sayı ana başlığı ile ilgisiz makaleler değerlendirmeye alınmayacaktır. Özel sayı için gönderilen makalelerin "Makalemi özel sayıya göndermek istiyorum" kutucuğu işaretlenerek sisteme yüklenmesi gerekmektedir. Özel sayı için gönderilmemiş makalelerin bu sayıya eklenmesi mümkün olmayacaktır.
Özel Sayı Çalışma Takvimi
Gönderim Başlangıcı: 15 Nisan 2024
Son Gönderim Tarihi: 15 Temmuz 2024
Özel Sayı Yayınlanma Tarihi: Eylül 2024

Dergimize göndereceğiniz çalışmalar linkte yer alan taslak dikkate alınarak hazırlanmalıdır. Çalışmanızı aktaracağınız taslak dergi yazım kurallarına göre düzenlenmiştir. Bu yüzden biçimlendirmeyi ve ana başlıkları değiştirmeden çalışmanızı bu taslağa aktarmanız gerekmektedir.
İngilizce Makale Şablonu için tıklayınız...

Saygılarımızla,