The purpose of the this study is to introduce the sequence space $$ \ell_{p}(E,B(r,s))=\bigg\{x=(x_{n})\in \omega: \sum_{n=1}^{\infty} \bigg|\sum_{j\in E_n}rx_{j}+\sum_{j\in E_{n+1}}sx_{j}\bigg|^{p}<\infty\bigg\}, $$ where $E=(E_n)$ is a partition of finite subsets of the positive integers, $r,s\in \mathbb{R}\backslash \{0\}$ and $p\geq 1$. The topological and algebraical properties of this space are examined. Furthermore, we establish some inclusion relations. Finally, the problem of finding the norm of certain matrix operators such as Copson and Hilbert from $\ell_p$ into $\ell_{p}(E,B(r,s)) $ is investigated.
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Articles |
Yazarlar | |
Yayımlanma Tarihi | 14 Aralık 2018 |
Kabul Tarihi | 19 Kasım 2018 |
Yayımlandığı Sayı | Yıl 2018 Cilt: 1 Sayı: 1 |