Konferans Bildirisi
BibTex RIS Kaynak Göster

A New Modular Space Derived by Euler Totient Function

Yıl 2019, Cilt: 2 Sayı: 1, 90 - 93, 30.10.2019

Öz

In this study, we introduce the Euler Totient sequence spaces  in generalized Orlicz space and  we examine some topological properties of these spaces by using the Luxemburg norm.

Kaynakça

  • [1] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
  • [2] J. Musielak, Orlicz Spaces and Modular Space, New York, Springer Verlag, 1983.
  • [3] I. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
  • [4] E. Kovac, On $\phi$ convergence and $\phi$ density, Math. Slovaca 55 (2005), 329-351.
  • [5] I. Niven, H. S. Zuckerman, H. L. Montgomery, An introduction to the theory of numbers, (5th edition), Wiley, New York, 1991.
  • [6] M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
  • [7] H. Haryadi, S. Supama, A. Zulijanto, A generalization of Cesaro sequence spaces in the Orlicz space, J. Phys. Conf. Ser. 1008 (2018), 012020.
Yıl 2019, Cilt: 2 Sayı: 1, 90 - 93, 30.10.2019

Öz

Kaynakça

  • [1] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
  • [2] J. Musielak, Orlicz Spaces and Modular Space, New York, Springer Verlag, 1983.
  • [3] I. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
  • [4] E. Kovac, On $\phi$ convergence and $\phi$ density, Math. Slovaca 55 (2005), 329-351.
  • [5] I. Niven, H. S. Zuckerman, H. L. Montgomery, An introduction to the theory of numbers, (5th edition), Wiley, New York, 1991.
  • [6] M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
  • [7] H. Haryadi, S. Supama, A. Zulijanto, A generalization of Cesaro sequence spaces in the Orlicz space, J. Phys. Conf. Ser. 1008 (2018), 012020.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Merve İlkhan 0000-0002-0831-1474

Emrah Evren Kara 0000-0002-6398-4065

Fuat Usta 0000-0002-7750-6910

Yayımlanma Tarihi 30 Ekim 2019
Kabul Tarihi 18 Eylül 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 1

Kaynak Göster

APA İlkhan, M., Kara, E. E., & Usta, F. (2019). A New Modular Space Derived by Euler Totient Function. Conference Proceedings of Science and Technology, 2(1), 90-93.
AMA İlkhan M, Kara EE, Usta F. A New Modular Space Derived by Euler Totient Function. Conference Proceedings of Science and Technology. Ekim 2019;2(1):90-93.
Chicago İlkhan, Merve, Emrah Evren Kara, ve Fuat Usta. “A New Modular Space Derived by Euler Totient Function”. Conference Proceedings of Science and Technology 2, sy. 1 (Ekim 2019): 90-93.
EndNote İlkhan M, Kara EE, Usta F (01 Ekim 2019) A New Modular Space Derived by Euler Totient Function. Conference Proceedings of Science and Technology 2 1 90–93.
IEEE M. İlkhan, E. E. Kara, ve F. Usta, “A New Modular Space Derived by Euler Totient Function”, Conference Proceedings of Science and Technology, c. 2, sy. 1, ss. 90–93, 2019.
ISNAD İlkhan, Merve vd. “A New Modular Space Derived by Euler Totient Function”. Conference Proceedings of Science and Technology 2/1 (Ekim 2019), 90-93.
JAMA İlkhan M, Kara EE, Usta F. A New Modular Space Derived by Euler Totient Function. Conference Proceedings of Science and Technology. 2019;2:90–93.
MLA İlkhan, Merve vd. “A New Modular Space Derived by Euler Totient Function”. Conference Proceedings of Science and Technology, c. 2, sy. 1, 2019, ss. 90-93.
Vancouver İlkhan M, Kara EE, Usta F. A New Modular Space Derived by Euler Totient Function. Conference Proceedings of Science and Technology. 2019;2(1):90-3.