Konferans Bildirisi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 2 Sayı: 2, 153 - 157, 25.11.2019

Öz

Kaynakça

  • [1] N. Ayyıldız , A. C. Çöken and Ahmet Yücesan, A Characterization of Dual Lorentzian Spherical Curves in the Dual Lorentzian Space, Taiwanese Journal of Mathematics, 11(4) (2007), 999-1018.
  • [2] R. A. Abdel Bakey, An Explicit Characterization of Dual Spherical Curve, Commun. Fac. Sci. Univ. Ank. Series, 51(2) (2002), 2, 1-9
  • [3] S. Breuer, D. Gottlieb, Explicit Characterization of Spherical Curves, Proc. Am. Math. Soc. 27 (1971), 126-127.
  • [4] K. Ilarslan, Ç. Camci, H. Kocayigit, On the explicit characterization of spherical curves in 3-dimensional Lorentzian space, Journal of Inverse and Ill-posed Problems, 11 (2003), 4, pp. 389-397.
  • [5] S. Izumiya, N. Takeuchi, New Special Curves and Developable Surfaces, Turk. J. Math. 28 (2004), 153-163.
  • [6] O. Kose, An Expilicit Characterization of Dual Spherical Curves, Do˘ga Mat. 12(3) (1998), 105-113.
  • [7] M. Özdemir, An Alternative Approach to Elliptical Motion, Adv. Appl. Clifford Algebras 26 (2016), 279-304.
  • [8] Z. Özdemir, F. Ates, Trajectories of a point on the elliptical 2-sphere, arXiv:submit/2795112.
  • [9] P. D. Scofield, Curves of Constant Precession, Amer. Math. Monthly. 102(6)(1995), 531-537.
  • [10] Y. C. Wong, On an Explicit Characterization of Spherical Curves, Proc. Am. Math. Soc., 34(1) (1972), 239-242.
  • [11] Y. C. Wong, A global formulation of the condition for a curve to lie in a sphere, Monatsh. Math. 67 (1963), 363-365.

Special Helices on the Ellipsoid

Yıl 2019, Cilt: 2 Sayı: 2, 153 - 157, 25.11.2019

Öz

In this study, we investigate three types of special helices whose axis is a fixed constant Killing vector field on the Ellipsoid $% \mathbb{S}_{a_{1},a_{2},a_{3}}^{2}$ in $\mathbb{R}_{a_{1},a_{2},a_{3}}^{3}$. Then, we obtain the curvatures of all special helices on the ellipsoid $% \mathbb{S}_{a_{1},a_{2},a_{3}}^{2}$ and give some characterizations of these curves. Moreover, we present various examples and visualize their images using the Mathematica program.

Kaynakça

  • [1] N. Ayyıldız , A. C. Çöken and Ahmet Yücesan, A Characterization of Dual Lorentzian Spherical Curves in the Dual Lorentzian Space, Taiwanese Journal of Mathematics, 11(4) (2007), 999-1018.
  • [2] R. A. Abdel Bakey, An Explicit Characterization of Dual Spherical Curve, Commun. Fac. Sci. Univ. Ank. Series, 51(2) (2002), 2, 1-9
  • [3] S. Breuer, D. Gottlieb, Explicit Characterization of Spherical Curves, Proc. Am. Math. Soc. 27 (1971), 126-127.
  • [4] K. Ilarslan, Ç. Camci, H. Kocayigit, On the explicit characterization of spherical curves in 3-dimensional Lorentzian space, Journal of Inverse and Ill-posed Problems, 11 (2003), 4, pp. 389-397.
  • [5] S. Izumiya, N. Takeuchi, New Special Curves and Developable Surfaces, Turk. J. Math. 28 (2004), 153-163.
  • [6] O. Kose, An Expilicit Characterization of Dual Spherical Curves, Do˘ga Mat. 12(3) (1998), 105-113.
  • [7] M. Özdemir, An Alternative Approach to Elliptical Motion, Adv. Appl. Clifford Algebras 26 (2016), 279-304.
  • [8] Z. Özdemir, F. Ates, Trajectories of a point on the elliptical 2-sphere, arXiv:submit/2795112.
  • [9] P. D. Scofield, Curves of Constant Precession, Amer. Math. Monthly. 102(6)(1995), 531-537.
  • [10] Y. C. Wong, On an Explicit Characterization of Spherical Curves, Proc. Am. Math. Soc., 34(1) (1972), 239-242.
  • [11] Y. C. Wong, A global formulation of the condition for a curve to lie in a sphere, Monatsh. Math. 67 (1963), 363-365.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Zehra Özdemir 0000-0001-9750-507X

Yayımlanma Tarihi 25 Kasım 2019
Kabul Tarihi 25 Ekim 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 2

Kaynak Göster

APA Özdemir, Z. (2019). Special Helices on the Ellipsoid. Conference Proceedings of Science and Technology, 2(2), 153-157.
AMA Özdemir Z. Special Helices on the Ellipsoid. Conference Proceedings of Science and Technology. Kasım 2019;2(2):153-157.
Chicago Özdemir, Zehra. “Special Helices on the Ellipsoid”. Conference Proceedings of Science and Technology 2, sy. 2 (Kasım 2019): 153-57.
EndNote Özdemir Z (01 Kasım 2019) Special Helices on the Ellipsoid. Conference Proceedings of Science and Technology 2 2 153–157.
IEEE Z. Özdemir, “Special Helices on the Ellipsoid”, Conference Proceedings of Science and Technology, c. 2, sy. 2, ss. 153–157, 2019.
ISNAD Özdemir, Zehra. “Special Helices on the Ellipsoid”. Conference Proceedings of Science and Technology 2/2 (Kasım 2019), 153-157.
JAMA Özdemir Z. Special Helices on the Ellipsoid. Conference Proceedings of Science and Technology. 2019;2:153–157.
MLA Özdemir, Zehra. “Special Helices on the Ellipsoid”. Conference Proceedings of Science and Technology, c. 2, sy. 2, 2019, ss. 153-7.
Vancouver Özdemir Z. Special Helices on the Ellipsoid. Conference Proceedings of Science and Technology. 2019;2(2):153-7.