Konferans Bildirisi
BibTex RIS Kaynak Göster

On Some Generalized Deferred Cesàro Means-II

Yıl 2019, Cilt: 2 Sayı: 3, 198 - 200, 30.12.2019

Öz

In this study, using the generalized difference operator $\Delta^{m}$, we introduce some new sequence spaces and investigate some topological properties of these sequence spaces.

Destekleyen Kurum

FIRAT UNIVERSITY

Proje Numarası

FUBAB FF.19.15

Teşekkür

This research was supported by Management Union of the Scientific Research Projects of Firat University under the Project Number: FUBAB FF.19.15. We would like to thank Firat University Scientific Research Projects Unit for their support.

Kaynakça

  • [1] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176.
  • [2] M. Et, R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21(4) (1995), 377-386.
  • [3] M. Et, F. Nuray, $\Delta^{m}-$statistical convergence, Indian J. Pure Appl. Math. 32(6) (2001), 961–969.
  • [4] R. P. Agnew, On deferred Cesàro means, Ann. of Math. (2) 33(3) (1932), 413–421.
  • [5] V. K. Bhardwaj, S. Gupta, R. Karan, Köthe-Toeplitz duals and matrix transformations of Cesàro difference sequence spaces of second order, J. Math. Anal. 5(2) (2014), 1–11.
  • [6] B. Altay, F. Basar, On the fine spectrum of the difference operator $\Delta$ on $c_{0}$ and $c$, Inform. Sci. 168(1-4) (2004), 217–224.
  • [7] Y. Altin, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29(2) (2009), 427–434.
  • [8] V. K. Bhardwaj, S. Gupta, Cesàro summable difference sequence space, J. Inequal. Appl., 2013(315) (2013), 9.
  • [9] M.Candan, Vector-valued FK-space defined by a modulus function and an infinite matrix: Thai J. of Math 12(1) (2014), 155-165.
  • [10] M. Et, On some generalized Cesàro difference sequence spaces, ˙Istanbul Üniv. Fen Fak. Mat. Derg. 55/56 (1996/97), 221–229.
  • [11] M. Et, M. Mursaleen and M. I¸sık, On a class of fuzzy sets defined by Orlicz functions, Filomat 27(5) (2013), 789–796.
  • [12] G.Kılınc, M. Candan, Some Generalized Fibonacci Difference Spaces defined by a Sequence of Modulus Functions, Facta Universitatis, Series: Mathematics and Informatics, 32(1) (2017), 095-116.
  • [13] M. A. Sarıgöl, On difference sequence spaces, J. Karadeniz Tech. Univ., Fac. Arts Sci., Ser. Math.-Phys 10, 63-71.
Yıl 2019, Cilt: 2 Sayı: 3, 198 - 200, 30.12.2019

Öz

Proje Numarası

FUBAB FF.19.15

Kaynakça

  • [1] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176.
  • [2] M. Et, R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21(4) (1995), 377-386.
  • [3] M. Et, F. Nuray, $\Delta^{m}-$statistical convergence, Indian J. Pure Appl. Math. 32(6) (2001), 961–969.
  • [4] R. P. Agnew, On deferred Cesàro means, Ann. of Math. (2) 33(3) (1932), 413–421.
  • [5] V. K. Bhardwaj, S. Gupta, R. Karan, Köthe-Toeplitz duals and matrix transformations of Cesàro difference sequence spaces of second order, J. Math. Anal. 5(2) (2014), 1–11.
  • [6] B. Altay, F. Basar, On the fine spectrum of the difference operator $\Delta$ on $c_{0}$ and $c$, Inform. Sci. 168(1-4) (2004), 217–224.
  • [7] Y. Altin, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29(2) (2009), 427–434.
  • [8] V. K. Bhardwaj, S. Gupta, Cesàro summable difference sequence space, J. Inequal. Appl., 2013(315) (2013), 9.
  • [9] M.Candan, Vector-valued FK-space defined by a modulus function and an infinite matrix: Thai J. of Math 12(1) (2014), 155-165.
  • [10] M. Et, On some generalized Cesàro difference sequence spaces, ˙Istanbul Üniv. Fen Fak. Mat. Derg. 55/56 (1996/97), 221–229.
  • [11] M. Et, M. Mursaleen and M. I¸sık, On a class of fuzzy sets defined by Orlicz functions, Filomat 27(5) (2013), 789–796.
  • [12] G.Kılınc, M. Candan, Some Generalized Fibonacci Difference Spaces defined by a Sequence of Modulus Functions, Facta Universitatis, Series: Mathematics and Informatics, 32(1) (2017), 095-116.
  • [13] M. A. Sarıgöl, On difference sequence spaces, J. Karadeniz Tech. Univ., Fac. Arts Sci., Ser. Math.-Phys 10, 63-71.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Mikail Et 0000-0001-8292-7819

Proje Numarası FUBAB FF.19.15
Yayımlanma Tarihi 30 Aralık 2019
Kabul Tarihi 12 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 3

Kaynak Göster

APA Et, M. (2019). On Some Generalized Deferred Cesàro Means-II. Conference Proceedings of Science and Technology, 2(3), 198-200.
AMA Et M. On Some Generalized Deferred Cesàro Means-II. Conference Proceedings of Science and Technology. Aralık 2019;2(3):198-200.
Chicago Et, Mikail. “On Some Generalized Deferred Cesàro Means-II”. Conference Proceedings of Science and Technology 2, sy. 3 (Aralık 2019): 198-200.
EndNote Et M (01 Aralık 2019) On Some Generalized Deferred Cesàro Means-II. Conference Proceedings of Science and Technology 2 3 198–200.
IEEE M. Et, “On Some Generalized Deferred Cesàro Means-II”, Conference Proceedings of Science and Technology, c. 2, sy. 3, ss. 198–200, 2019.
ISNAD Et, Mikail. “On Some Generalized Deferred Cesàro Means-II”. Conference Proceedings of Science and Technology 2/3 (Aralık 2019), 198-200.
JAMA Et M. On Some Generalized Deferred Cesàro Means-II. Conference Proceedings of Science and Technology. 2019;2:198–200.
MLA Et, Mikail. “On Some Generalized Deferred Cesàro Means-II”. Conference Proceedings of Science and Technology, c. 2, sy. 3, 2019, ss. 198-00.
Vancouver Et M. On Some Generalized Deferred Cesàro Means-II. Conference Proceedings of Science and Technology. 2019;2(3):198-200.