Konferans Bildirisi
BibTex RIS Kaynak Göster

The space $bv_{k}^{\theta }$ and matrix transformations

Yıl 2019, Cilt: 2 Sayı: 3, 169 - 172, 30.12.2019

Öz

In this study, we introduce the space $bv_{k}^{\theta },$ give its some algebraic and topological properties, and also characterize some matrix operators defined on that space. Also we extend some well known results.

Destekleyen Kurum

Pamukkale University Scientific Research Projects Coordinatorship

Proje Numarası

(Grant No. 2019KRM004-029)

Kaynakça

  • [1] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematical Studies, 85, Elsevier Science Publisher, 1984.
  • [2] A. M. Akhmedov, F. Başar, The fine spectra of the difference operator $\Delta $ over the sequence space $b{v_p},(1 \le p < \infty ),$ Acta Math. Sin. (Engl. Ser.), 23(10) (2007), 1757-1768.
  • [3] F. Başar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Analysis 68(2) (2008), 273–287.
  • [4] G.C.H. Güleç, Compact Matrix Operators on Absolute Cesàro Spaces, Numer. Funct. Anal. Optim., 2019. DOI: 10.1080/01630563.2019.1633665
  • [5] G. C. Hazar, M.A. Sarıgöl, On absolute Nörlund spaces and matrix operators, Acta Math. Sin. (Engl. Ser.), 34(5) (2018), 812-826.
  • [6] A. M. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo II, 52 (1998), 177-191.
  • [7] E. E. Kara, M. ˙Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear Algebra 64 (2016), 2208–2223.
  • [8] M. A. Sarıgöl, Spaces of Series Summable by Absolute Cesàro and Matrix Operators, Comm. Math Appl. 7(1) (2016), 11-22.
  • [9] I. J. Maddox, Elements of functinal analysis, Cambridge University Press, London, New York, (1970).
  • [10] M. Stieglitz, H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnisüberischt, Math Z. 154 (1977), 1-16.
  • [11] E. Malkowsky, V. Rakocevic, S. Živkovic, Matrix transformations between the sequence space bvk and certain BK spaces, Bull. Cl. Sci. Math. Nat. Sci. Math. 123(27) (2002), 33–46.
  • [12] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford 18(2) (1967), 345-355.
  • [13] M. F. Mears, Absolute Regularity and the Nörlund Mean, Annals of Math., 38(3) (1937), 594-601.
Yıl 2019, Cilt: 2 Sayı: 3, 169 - 172, 30.12.2019

Öz

Proje Numarası

(Grant No. 2019KRM004-029)

Kaynakça

  • [1] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematical Studies, 85, Elsevier Science Publisher, 1984.
  • [2] A. M. Akhmedov, F. Başar, The fine spectra of the difference operator $\Delta $ over the sequence space $b{v_p},(1 \le p < \infty ),$ Acta Math. Sin. (Engl. Ser.), 23(10) (2007), 1757-1768.
  • [3] F. Başar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Analysis 68(2) (2008), 273–287.
  • [4] G.C.H. Güleç, Compact Matrix Operators on Absolute Cesàro Spaces, Numer. Funct. Anal. Optim., 2019. DOI: 10.1080/01630563.2019.1633665
  • [5] G. C. Hazar, M.A. Sarıgöl, On absolute Nörlund spaces and matrix operators, Acta Math. Sin. (Engl. Ser.), 34(5) (2018), 812-826.
  • [6] A. M. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo II, 52 (1998), 177-191.
  • [7] E. E. Kara, M. ˙Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear Algebra 64 (2016), 2208–2223.
  • [8] M. A. Sarıgöl, Spaces of Series Summable by Absolute Cesàro and Matrix Operators, Comm. Math Appl. 7(1) (2016), 11-22.
  • [9] I. J. Maddox, Elements of functinal analysis, Cambridge University Press, London, New York, (1970).
  • [10] M. Stieglitz, H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnisüberischt, Math Z. 154 (1977), 1-16.
  • [11] E. Malkowsky, V. Rakocevic, S. Živkovic, Matrix transformations between the sequence space bvk and certain BK spaces, Bull. Cl. Sci. Math. Nat. Sci. Math. 123(27) (2002), 33–46.
  • [12] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford 18(2) (1967), 345-355.
  • [13] M. F. Mears, Absolute Regularity and the Nörlund Mean, Annals of Math., 38(3) (1937), 594-601.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

G. Canan Hazar Güleç 0000-0002-8825-5555

Mehmet Ali Sarıgöl 0000-0002-4107-4669

Proje Numarası (Grant No. 2019KRM004-029)
Yayımlanma Tarihi 30 Aralık 2019
Kabul Tarihi 2 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 3

Kaynak Göster

APA Hazar Güleç, G. C., & Sarıgöl, M. A. (2019). The space $bv_{k}^{\theta }$ and matrix transformations. Conference Proceedings of Science and Technology, 2(3), 169-172.
AMA Hazar Güleç GC, Sarıgöl MA. The space $bv_{k}^{\theta }$ and matrix transformations. Conference Proceedings of Science and Technology. Aralık 2019;2(3):169-172.
Chicago Hazar Güleç, G. Canan, ve Mehmet Ali Sarıgöl. “The Space $bv_{k}^{\theta }$ and Matrix Transformations”. Conference Proceedings of Science and Technology 2, sy. 3 (Aralık 2019): 169-72.
EndNote Hazar Güleç GC, Sarıgöl MA (01 Aralık 2019) The space $bv_{k}^{\theta }$ and matrix transformations. Conference Proceedings of Science and Technology 2 3 169–172.
IEEE G. C. Hazar Güleç ve M. A. Sarıgöl, “The space $bv_{k}^{\theta }$ and matrix transformations”, Conference Proceedings of Science and Technology, c. 2, sy. 3, ss. 169–172, 2019.
ISNAD Hazar Güleç, G. Canan - Sarıgöl, Mehmet Ali. “The Space $bv_{k}^{\theta }$ and Matrix Transformations”. Conference Proceedings of Science and Technology 2/3 (Aralık 2019), 169-172.
JAMA Hazar Güleç GC, Sarıgöl MA. The space $bv_{k}^{\theta }$ and matrix transformations. Conference Proceedings of Science and Technology. 2019;2:169–172.
MLA Hazar Güleç, G. Canan ve Mehmet Ali Sarıgöl. “The Space $bv_{k}^{\theta }$ and Matrix Transformations”. Conference Proceedings of Science and Technology, c. 2, sy. 3, 2019, ss. 169-72.
Vancouver Hazar Güleç GC, Sarıgöl MA. The space $bv_{k}^{\theta }$ and matrix transformations. Conference Proceedings of Science and Technology. 2019;2(3):169-72.