Araştırma Makalesi
BibTex RIS Kaynak Göster

SANAYİDE KARBONSUZLAŞMA: MALZEME ETKİNLİĞİ STRATEJİLERİNİN ROLÜ

Yıl 2022, Cilt: 1 Sayı: 2, 81 - 118, 12.08.2022

Öz

Sanayi emisyonlarının azaltımı net sıfır emisyon hedefinin başarılması için kritik öneme sahiptir. Bununla birlikte, bu sektörün karbon yoğun bir üretim sürecinin parçası olması, malzeme üretimi ve kullanımı sonucu ortaya çıkan emisyon azaltımını zorlaştırmaktadır. Bu çalışmanın amacı, sanayide karbonsuzlaşma için malzeme etkinliğinin önemine vurgu yapmak ve bu yönde uygulanabilecek stratejileri tartışmaktır. Bu yüzden, ilk olarak, sanayi sektörünün neden “azaltım yapılması zor” sektör olduğunu, sanayi sektörü azaltım seçeneklerini ve malzeme etkinliğinin azaltım politikası bağlamındaki kritik rolünü ele almaktadır. İkinci olarak, malzeme etkinliğini sağlayacak stratejileri ve bu stratejilerin hangi ürün yaşam döngüsü aşamalarında gerçekleştirilebileceğini tartışmaktadır. Tüm bu tartışmalar, literatürdeki çalışmalardan elde edilen bulgulara ve önemli kurum ve kuruluşların yayınladığı raporlara dayanmaktadır. Bulgular, sanayide karbonsuzlaşma için büyük bir potansiyel olduğunu ve ürünün tasarım aşamasından kullanım ömrü sonuna kadar geçirdiği süreçte, malzemenin etkin kullanımının sürdürülebilirlik ve döngüsel ekonomi açısından önemli katkılar sunabileceğini göstermektedir. Dahası, emisyon azaltım potansiyeli en yüksek olan aşamaların, tasarım ve kullanım aşamaları olduğu tespit edilmiştir. Bu çalışma, diğer çalışmalardan farklı olarak, malzeme etkinliği konusunu sanayi sektörü özelinde tartışmakta, ve malzeme etkinliğini sağlayacak stratejileri ve bu stratejilerin gerçekleştirilebileceği aşamaları tartışmaktadır. Bu bağlamda, literatüre önemli katkı sağlayacağı düşünülmektedir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

221K082

Kaynakça

  • Acar, S., Aşıcı, A. ve Yeldan, E. (2021). Potential Effects of the EU’s Carbon Border Adjustment Mechanism on the Turkish Economy. Environment, Development and Sustainability. Basım Aşamasında.
  • Ahman, M. ve Nillsson, L. (2015). Decarbonizing Industry in the EU: Climate, Trade and Industrial Policy Strategies. Decarbonization in the European Union, Editör: Dupont, C. ve Oberthür, S., Palgrave Macmillan, Londra.
  • Aidt, T., Jia, L. ve Low, H. (2017). Are Prices Enough? The Economics of Material Demand Reduction. Philosophical Transactions of The Royal Society A, 375(20160370).
  • Akerboom, S., Waldmann, S., Mukherjee, A., Agaton, C., Sanders, M. ve Kramer, G.J. (2021). Different This Time? The Prospects of CCS in the Netherlands in the 2020. Frontiers in Energy Research, 9, 644796.
  • Alataş, S., Karakaya, E., ve Hiçyılmaz, B. (2021a). What Does Input Substitution Tell Us in Helping Decarbonization and Dematerialization? Industry Level Analysis for South Korea. Sustainable Production and Consumption, 27: 411–424.
  • Alataş, S., Karakaya, E. ve Sarı, E. (2021b). The Potential of Material Productivity alongside Energy Productivity in Climate Mitigation: Evidence from Convergence Tests in the EU28. Resources, Conservation & Recycling, 167, 105322.
  • Allwood, J. M., Ashby, M. F., Gutowski, T. G., ve Worrell, E. (2011). “Material efficiency: A White Paper. Resources, Conservation and Recycling, 55(3): 362-381.
  • Allwood, J.M., Ashby, M.F., Gutowski, T.G. ve Worrell, E. (2013). Material Efficiency: Providing Material Services with Less Material Production. Philosophical Transactions of The Royal Society A, 371(20120496).
  • Allwood, J.M., Cullen, J.M. ve Milford, R.L. (2010). Options for Achieving a 50% Cut in Industrial Carbon Emissions by 2050. Environmental Science and Technology, 44(6).
  • Allwood, J., Dunant, C., Lupton, R., ve Cabrera Serrenho, A. (2019). Steel Arising: Opportunities for the UK in a transforming global steel industry. Apollo – University of Cambridge Repository, from https://www.repository.cam.ac.uk/handle/1810/294350 (Erişim Tarihi:18.04.2022).
  • Asiedu, Y., ve Gu, P. (1998). Product Life Cycle Cost Analysis: State of the Art Review. International Journal of Production Research, 36(4): 883-908.
  • Axelson, M., Oberthür, S., ve Nilsson, L. J. (2021). Emission Reduction Strategies in the EU Steel Industry: Implications for Business Model Innovation. Journal of Industrial Ecology, 25(2): 390-402.
  • Bataille, C. (2020). Physical and Policy Pathways to Net-zero Emissions Industry. WIREs Climate Change, 11, 633.
  • Bataille, C., Åhman, M., Neuhoff, K., Nilsson, L.J., Fischedick, M., Lechtenbohmer, S., Solano-Rodriquez, B., Denis-Ryan, A., Stiebert, S.,Waisman, H., Sartor, O. ve Rahbar, O. (2018). A Review of Technology and Policy Deep Decarbonization Pathway Options for Making Energy-Intensive Industry Production Consistent with the Paris Agreement. Journal of Cleaner Production, 187: 960-973.
  • Baumert, K., Herzog, T. ve Pershing, J. (2005). Navigating the Numbers: Greenhouse Gas Data and International Climate Policy. WRI Publications, Washington.
  • Cavlak, H. (2021). Etkinlik, Etkililik, Verimlilik, Kârlılık, Performans: Kavramsal Bir Çerçeve ve Karşılaştırma. Journal of Research in Business, 6(1): 99-126.
  • COP26 (UN Climate Change Conference) (2021). COP26 The Glasgow Climate Pact, https://ukcop26.org/, (Erişim tarihi: 18.04.2022).
  • Davis, S.J., Lewis, N.S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I. L. et al. (2018). Net-zero Emissions Energy Systems. Science, 360(6396): 1-19.
  • Deckert, C. (2016). Ecological Sustainability of Material Resources – Why Material Efficiency Just isn’t Enough. uwf, 24: 325–335.
  • Denis-Ryan, A., Bataille, C. ve Jotzo, F. (2016). Managing Carbon-intensive Materials in a Decarbonizing World without a Global Price on Carbon. Climate Policy, 16(1): 110-128.
  • Ding, G. K. (2014). Life Cycle Assessment (LCA) of Sustainable Building Materials: An Overview. Eco-efficient Construction and Building Materials, 38-62.
  • Dunant, C. F., Skelton, A. C., Drewniok, M. P., Cullen, J. M., ve Allwood, J. M. (2019). A Marginal Abatement Cost Curve for Material Efficiency Accounting for Uncertainty. Resources, Conservation and Recycling, 144: 39-47.
  • EC (European Commission), (2021). Carbon Leakage. https://ec.europa.eu/clima/eu-action/eu-emissions-trading-system-eu-ets/free-allocation/carbon-leakage_en#ecl-inpage-1252, (Erişim tarihi: 18.04.2022).
  • Eisenbart, B., Gericke, K., ve Blessing, L. (2011). A Framework for Comparing Design Modelling Approaches Across Disciplines. In DS 68-2: Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society through Engineering Design, Vol. 2: Design Theory and Research Methodology, Lyngby/Copenhagen, Denmark, 15.08.2011-19.08. 2011 (pp. 344-355).
  • European Commission (2015). Closing the Loop-An EU Action Plan for the Circular Economy. Brussels, 2.12.2015, COM (2015).
  • European Commission (2019). The European Green Deal. Brussels, 11.12.2019 COM(2019).
  • European Commission (2021). CBAM Factsheet. 14.07.2021, https://ec.europa.eu/commission/presscorner/detail/en/fs_21_3666 (Erişim Tarihi: 08.04.2022).
  • Feldmann, J. ve Kennedy, K. (2021). Toward a Tradable, Low-carbon Product Standard for Steel Policy Design Considerations for the United States. WRI Working Paper.
  • Fransen, T., Lebling, K., Weyl, D. ve Kennedy, K. (2021). Toward a Tradable, Low-carbon Cement Standard Policy Design Considerations for the United States. WRI Working Paper.
  • Garvey, A., Norman, J. B., ve Barrett, J. (2022). Technology and Material Efficiency Scenarios for Net Zero Emissions in the UK Steel Sector. Journal of Cleaner Production, 333, 130216.
  • Gehin, A., Zwolinski, P., ve Brissaud, D. (2008). A Tool to Implement Sustainable End-Of-Life Strategies in the Product Development Phase. Journal of Cleaner Production, 16(5): 566-576.
  • Gericke, K., ve Blessing, L. (2012). An Analysis of Design Process Models Across Disciplines”. In DS 70: Proceedings of DESIGN 2012, The 12th International Design Conference, Dubrovnik, Croatia.
  • Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A., ve Scrivener, K. L. (2020). Environmental Impacts and Decarbonization Strategies in the Cement and Concrete Industries. Nature Reviews Earth & Environment, 1(11): 559-573.
  • Hertwich, E. G., Ali, S., Ciacci, L., Fishman, T., Heeren, N., Masanet, E., ... ve Wolfram, P. (2019). Material Efficiency Strategies to Reducing Greenhouse Gas Emissions Associated with Buildings, Vehicles, and Electronics—A Review. Environmental Research Letters, 14(4), 043004.
  • Ho, F. H., Abdul-Rashid, S. H., Raja Ghazilla, R. A., ve Woo, Y. L. (2019). Resources Sustainability through Material Efficiency Strategies: An Insight Study of Electrical And Electronic Companies. Resources, 8(2), 117.
  • Ho, F. H., Abdul-Rashid, S. H., Raja Ghazilla, R. A., Sakundarini, N., Woo, Y. L., Ahmad, S., Ghazali, I., ve Abdul Haq, R. H. (2021). “What Key Drivers Are Needed to Implement Material Efficiency Strategies? An Analysis of the Electrical and Electronic Industry in Malaysia and Its Implications to Practitioners. Sustainability, 13(4), 2065.
  • Horton, P. M., ve Allwood, J. M. (2017). Yield Improvement Opportunities for Manufacturing Automotive Sheet Metal Components. Journal of Materials Processing Technology, 249: 78-88.
  • Howard, T. J., Culley, S. J., ve Dekoninck, E. (2008). Describing the Creative Design Process by the Integration of Engineering Design and Cognitive Psychology Literature. Design Studies, 29(2): 160-180.
  • IEA (International Energy Agency), (2019). Material Efficiency in Clean Energy Transitions. IEA, Paris https://www.iea.org/reports/material-efficiency-in-clean-energy-transitions
  • IEA (International Energy Agency), (2020a). Energy Efficiency 2020. https://doi.org/10.1787/dfd85134-en, (Erişim tarihi:18.04.2022).
  • IEA (International Energy Agency), (2020b). Energy Technology Perspectives 2020. https://www.iea.org/reports/energy-technology-perspectives-2020, (Erişim tarihi:18.04.2022).
  • IEA (International Energy Agency), (2021a). Greenhouse Gas Emissions from Energy: Overview. https://www.iea.org/reports/greenhouse-gas-emissions-from-energy-overview, (Erişim tarihi:18.04.2022).
  • IEA (International Energy Agency), (2021b). World Energy Model Documentation. https://www.iea.org/reports/world-energy-model, (Erişim tarihi:18.04.2022).
  • IEA (International Energy Agency), (2021c). Tracking Industry 2021. https://www.iea.org/reports/tracking-industry-2021, (Erişim tarihi:18.04.2022).
  • IPCC (Intergovernmental Panel on Climate Change), (2018). Summary for Policymakers. https://www.ipcc.ch/sr15/chapter/spm/, (Erişim tarihi:18.04.2022).
  • IPCC (Intergovernmental Panel on Climate Change), (2022a). Climate Change 2022: Impacts, Adaptation, and Vulnerability. https://www.ipcc.ch/report/ar6/wg2/, (Erişim tarihi:19.04.2022).
  • IPCC (Intergovernmental Panel on Climate Change), (2022b). Climate Change 2022: Mitigation of Climate Change. https://www.ipcc.ch/report/ar6/wg3/, (Erişim tarihi:19.04.2022).
  • IRP (2019). Global Resources Outlook 2019: Natural Resources for the Future We Want, A Report of the International Resource Panel. United Nations Environment Programme. Nairobi, Kenya.
  • IRP (2020a). Resource Efficiency and Climate Change: Material Efficiency Strategies for a Low-Carbon Future. Hertwich, E., Lifset, R., Pauliuk, S., Heeren, N. A report of the International Resource Panel. United Nations Environment Programme, Nairobi, Kenya.
  • IRP (2020b). Resource Efficiency and Climate Change Full Report Launch at UNFCCC Race to Zero Dialogues. (13 November 2020), https://www.resourcepanel.org/news-events/resource-efficiency-and-climate-change-full-report-launch-unfccc-race-zero-dialogues (Erişim Tarihi: 13.04.2022).
  • Karakaya, E., Sarı, E., ve Alataş, S. (2021). What Drives Material Use in the EU? Evidence from Club Convergence and Decomposition Analysis on Domestic Material Consumption and Material Footprint. Resources Policy, 70, 101904.
  • Katelhön, A., Meys, R., Deutz, S., Suh, S. ve Bardow, A. (2019). Climate Change Mitigation Potential of Carbon Capture and Utilization in the Chemical Industry. Proceedings of the National Academy of Sciences (PNAS), 116(23).
  • King, A. M., Burgess, S. C., Ijomah, W., ve McMahon, C. A. (2006). Reducing Waste: Repair, Recondition, Remanufacture or Recycle?. Sustainable Development, 14(4): 257-267.
  • Lai, Y. (2008). Auctions or Grandfathering: The Political Economy of Tradable Emission Permits. Public Choice, 136: 181–200.
  • Lifset, R., ve Eckelman, M. (2013). Material Efficiency in a Multi-Material World. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1986), 20120002.
  • Loftus, P., Cohen, A., Long, J. ve Jenkins, J. (2015). A Critical Review of Global Decarbonization Scenarios: What do They Tell us about Feasibility?. WIREs Climate Change, 6: 93–112.
  • Mac Dowell, N., Fennell, P.S., Shah, N. ve Maitland, G.C. (2017). The Role of CO2 Capture and Utilization in Mitigating Climate Change. Nature Climate Change, 7: 243-249.
  • ME (Material Economics), (2019). Industrial Transformation 2050. https://materialeconomics.com/publications/industrial-transformation-2050, (Erişim tarihi:18.04.2022).
  • Milios, L. (2021). Towards a Circular Economy Taxation Framework: Expectations and Challenges of Implementation. Circular Economy and Sustainability, 1(2): 477-498.
  • Mohanty, C. R. C. (2011). Reduce, Reuse and Recycle (the 3Rs) and Resource Efficiency As the Basis for Sustainable Waste Management. Proceedings of the Synergizing Resource Efficiency with Informal Sector towards Sustainable Waste Management, New York, NY, USA, 9.
  • Montella, I., ve Marrone, P. (2021). Material Efficiency Design Strategies for the Circular Transition. TECHNE-Journal of Technology for Architecture and Environment, 86-95.
  • Morseletto, P. (2020). Targets for a Circular Economy. Resources, Conservation and Recycling, 153, 104553.
  • OECD (Organization for Economic Co-operation and Development)/IEA (International Energy Agency), (2017). Renewable Energy for Industry from Green Energy to Green Materials and Fuels. https://www.iea.org/reports/renewable-energy-for-industry, (Erişim tarihi:18.04.2022).
  • Pauliuk, S., ve Heeren, N. (2021). Material Efficiency and Its Contribution to Climate Change Mitigation in Germany: A Deep Decarbonization Scenario Analysis until 2060. Journal of Industrial Ecology, 25(2): 479-493.
  • Pauliuk, S., Heeren, N., Berrill, P., Fishman, T., Nistad, A., Tu, Q., ... ve Hertwich, E. G. (2021). Global Scenarios of Resource and Emission Savings from Material Efficiency in Residential Buildings and Cars. Nature communications, 12(1): 1-10.
  • Qureshi, A. J., Gericke, K., ve Blessing, L. (2014). Stages in Product Lifecycle: Trans-Disciplinary Design Context. Procedia CIRP, 21: 224-229.
  • Scott, K., Giesekam, J., Barrett, J., ve Owen, A. (2019). Bridging the Climate Mitigation Gap with Economy‐Wide Material Productivity. Journal of Industrial Ecology, 23(4): 918-931.
  • Sickles, R. C., ve Zelenyuk, V. (2019). Measurement of Productivity and Efficiency. Cambridge University Press.
  • UN (United Nations), (2015). Paris Agreement, https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement, (Erişim tarihi:18.04.2022).
  • Van Renssen, S. (2020). The Hydrogen Solution?. Nature Climate Change, 10: 799-801.
  • Vence, X., ve López Pérez, S. D. J. (2021). Taxation for a Circular Economy: New Instruments, Reforms, and Architectural Changes in the Fiscal System. Sustainability, 13(8), 4581.
  • Vermeulen, W. J., Reike, D., ve Witjes, S. (2019). Circular Economy 3.0; Solving Confusion Around New Conceptions of Circularity by Synthesising and Re-Organising The 3R’s Concept into A 10R Hierarchy. Renewable Matter, 27: 12-15.
  • WB (World Bank), (2022). World Bank Development Indicators. https://databank.worldbank.org/reports.aspx?source=world-development-indicators, (Erişim tarihi:18.04.2022).
  • Wennersten, R., Sun, Q. ve Li, H. (2015). The Future Potential for Carbon Capture and Storage in Climate Change Mitigation: An Overview from Perspectives of Technology, Economy and Risk. Journal of Cleaner Production, 103: 724-736.
  • Wesseling, J.H., Lechtenböhmer, S., Ahman, M., Nilsson, L.J., Worrell, E. ve Coenen, L. (2017). The Transition of Energy Intensive Processing Industries towards Deep Decarbonization: Characteristics and Implications for Future Research. Renewable and Sustainable Energy Reviews, 79: 1303–1313.
  • Woerdman, E., Couwenberg, O. ve Nentjes, A. (2009). Energy Prices and Emissions Trading: Windfall Profits from Grandfathering. European Journal of Law and Economics, 28: 185–202.
  • Wolfram, P., Tu, Q., Heeren, N., Pauliuk, S., ve Hertwich, E. G. (2021). Material Efficiency and Climate Change Mitigation of Passenger Vehicles. Journal of Industrial Ecology, 25(2): 494-510.
  • Worrell, E., Faaij, A. P. C., Phylipsen, G. J. M., ve Blok, K. (1995). An Approach for Analysing the Potential for Material Efficiency Improvement. Resources, Conservation and Recycling, 13(3-4): 215-232.
  • Yang, J., Zhang, L., Chang, Y., Hao, Y., Liu, G., Yan, Q., ve Zhao, Y. (2020). Understanding the Material Efficiency of the Wind Power Sector in China: A Spatial-Temporal Assessment. Resources, Conservation and Recycling, 155, 104668.
  • Yükçü, S., ve Atağan, G. (2009). Etkinlik, Etkililik ve Verimlilik Kavramlarının Yarattığı Karışıklık. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 23(4): 1-13.
  • Zhang, C., Chen, W., Ruth, M. (2018). Measuring Material Efficiency: A Review of the Historical Evolution of Indicators, Methodologies and Findings. Resources, Conservation & Recycling, 132: 79–92.
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre ve Kültür
Bölüm Araştırma Makaleleri
Yazarlar

Burcu Hiçyılmaz 0000-0003-3501-2012

Sedat Alataş 0000-0002-3764-8746

Etem Karakaya 0000-0003-0905-9116

Proje Numarası 221K082
Yayımlanma Tarihi 12 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 1 Sayı: 2

Kaynak Göster

APA Hiçyılmaz, B., Alataş, S., & Karakaya, E. (2022). SANAYİDE KARBONSUZLAŞMA: MALZEME ETKİNLİĞİ STRATEJİLERİNİN ROLÜ. Çevre Şehir Ve İklim Dergisi, 1(2), 81-118.