Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of Discharge Performance of Thermal Protection Systems Based on Phase Change Materials with Different Thermal Improvements

Yıl 2024, Cilt: 3 Sayı: 2, 44 - 54, 26.12.2024
https://doi.org/10.69560/cujast.1529209

Öz

This study focuses on the removal of heat transferred to the PCM during phase change material based passive thermal protection of transient heat releasing electronic systems in order to make it ready for the next thermal protection. In other words, the cooling performances (discharge) of PCM with heat stored (charge) for a certain period of time were compared in terms of different improvement techniques applied on PCM. For this purpose, firstly, Fin/PCM thermal protection systems obtained by adding different numbers of aluminium fins into the PCM were obtained. Similarly, Nanoparticle/PCM thermal protection systems obtained by adding carbon-based nanoparticles with high thermal conductivity at the rates of 1% and 3% by mass into the PCM were formed. The cooling performances of the obtained Fin/PCM and Nanoparticle/PCM thermal protection systems were evaluated in terms of maximum surface temperature and maximum surface temperature difference criteria. The results are given in comparison with the performance of PCM thermal protection. Compared to PCM, the best cooling performance belongs to the PCM thermal protection with six fins added with 10.5%. In the Nanoparticle/Fin/PCM hybrid thermal protection, it is determined that the components do not create any synergistic effect for the cooling performance and the main contribution is provided by the fins.

Kaynakça

  • Acır, A., & Emin Canlı, M. (2018). Investigation of fin application effects on melting time in a latent thermal energy storage system with phase change material (PCM). Applied Thermal Engineering, 144(September), 1071–1080. https://doi.org/ 10.1016/j.applthermaleng.2018.09.013
  • Buyruk, E., & Karabulut, K. (2020). Research of Heat Transfer Augmentation in Plate Fin Heat Exchangers Having Different Fin Types. Journal of Engineering Thermophysics, 29(2), 316–330. https://doi.org/10.1134/S1810232820020137
  • Chen, Y. J., Nguyen, D. D., Shen, M. Y., Yip, M. C., & Tai, N. H. (2013). Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2012.08.010
  • Cheng, W. L., Mei, B. J., Liu, Y. N., Huang, Y. H., & Yuan, X. D. (2011). A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: An experimental investigation. Energy, 36(10), 5797–5804. https://doi.org/10.1016/j.energy.2011.08.050
  • Chinnasamy, V., & Cho, H. (2022). Thermophysical investigation of metallic nanocomposite phase change materials for indoor thermal management. International Journal of Energy Research, 46(6), 7626–7641. https://doi.org/10.1002 /er.7664
  • Du, K., Calautit, J., Eames, P., & Wu, Y. (2021). A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat supply. Renewable Energy, 168, 1040–1057. https://doi.org/10.1016/j.renene.2020.12.057
  • Fan, L. W., Fang, X., Wang, X., Zeng, Y., Xiao, Y. Q., Yu, Z. T., Xu, X., Hu, Y. C., & Cen, K. F. (2013). Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Applied Energy. https://doi.org/10.1016/j.apenergy.2013.04.043
  • Hosseinizadeh, S. F., Tan, F. L., & Moosania, S. M. (2011). Experimental and numerical studies on performance of PCM-based heat sink with different con fi gurations of internal fi ns q. Applied Thermal Engineering, 31(17–18), 3827–3838. https://doi.org/10.1016/j.applthermaleng.2011.07.031
  • Huang, M. J., Eames, P. C., Norton, B., & Hewitt, N. J. (2011). Solar Energy Materials & Solar Cells Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Solar Energy Materials and Solar Cells, 95(7), 1598–1603. https://doi.org/10.1016/j.solmat.2011.01.008
  • Kaizawa, A., Maruoka, N., Kawai, A., Kamano, H., Jozuka, T., Senda, T., & Akiyama, T. (2008). Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 44(7), 763–769. https://doi.org/10.1007/s00231-007-0311-2
  • Karabulut, K. (2023). HEAT TRANSFER INCREMENT STUDY TAKING INTO CONSIDERATION FIN LENGTHS FOR CuO-WATER NANOFLUID IN CROSS FLOW-IMPINGING JET FLOW CHANNELS. Thermal Science, 27(6), 4345–4360. https://doi.org/10.2298/TSCI221203035K
  • Karabulut, K., Buyruk, E., & Kilinc, F. (2018). Grafen Oksit Nanoparçacıkları İçeren Nanoakışkanın Taşınım Isı Transferi ve Basınç Düşüşü Artışı Üzerindeki Etkisinin Düz Bir Boruda Deneysel Olarak Araştırılması. 59(690), 45–67.
  • Karabulut, K., Buyruk, E., & Kilinc, F. (2020). Experimental and numerical investigation of convection heat transfer in a circular copper tube using graphene oxide nanofluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(5), 1–16. https://doi.org/10.1007/s40430-020-02319-0
  • Kurs, B. (2024). Exploring the impact of inner and middle channel geometries on the melting rate of PCM-metal foam composition in a triplex tube heat exchanger. 51(April). https://doi.org/10.1016/j.tsep.2024.102621
  • Kurşun, B., & Balta, M. (2023). Evaluation of the different inner and outer channel geometry combinations for optimum melting and solidification performance in double pipe energy storage with phase change material: A numerical study. Journal of Energy Storage, 65(January). https://doi.org/10.1016/j.est.2023.107250
  • Mondieig, D., Rajabalee, F., Laprie, A., Oonk, H. A. J., Calvet, T., & Cuevas-Diarte, M. A. (2003). Protection of temperature sensitive biomedical products using molecular alloys as phase change material. Transfusion and Apheresis Science, 28(2), 143–148. https://doi.org/10.1016/S1473-0502(03) 00016-8
  • Ping, P., Peng, R., Kong, D., Chen, G., & Wen, J. (2018). Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment. Energy Conversion and Management, 176(August), 131–146. https://doi.org/10.1016/j. enconman.2018.09.025
  • Riahi, S., Jovet, Y., Saman, W. Y., Belusko, M., & Bruno, F. (2019). Sensible and latent heat energy storage systems for concentrated solar power plants, exergy efficiency comparison. Solar Energy, 180(August 2018), 104–115. https://doi.org/10.1016/j.solener.2018.12.072
  • Sarier, N., & Onder, E. (2012). Organic phase change materials and their textile applications: An overview. Thermochimica Acta, 540, 7–60. https://doi.org/10.1016/j.tca.2012.04.013
  • Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2007.10.005
  • Temel, Ü. N., & İ, B. Y. Ç. İ. F. T. Ç. (2018). DETERMINATION OF THERMAL PROPERTIES OF A82 ORGANIC PHASE CHANGE MATERIAL EMBEDDED WITH DIFFERENT TYPE NANOPARTICLES LIST OF SEYMBOLS. 75–85.
  • Tian, L. L., Liu, X., Chen, S., & Shen, Z. G. (2020). Effect of fin material on PCM melting in a rectangular enclosure. Applied Thermal Engineering, 167(April 2019). https://doi.org/10. 1016/j.applthermaleng.2019.114764
  • Wang, S. M., Matiašovský, P., Mihálka, P., & Lai, C. M. (2018). Experimental investigation of the daily thermal performance of a mPCM honeycomb wallboard. Energy and Buildings, 159, 419–425. https://doi.org/10.1016/j.enbuild.2017.10. 080
  • Yuan, Y., Li, T., Zhang, N., Cao, X., & Yang, X. (2016). Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-015-5173-0

Farklı Termal İyileştirmeler Uygulanmış Faz Değiştiren Malzeme Esaslı Termal Koruma Sistemlerinin Deşarj Performanslarının Karşılaştırılması

Yıl 2024, Cilt: 3 Sayı: 2, 44 - 54, 26.12.2024
https://doi.org/10.69560/cujast.1529209

Öz

Bu çalışma geçici olarak ısı açığa çıkaran elektronik sistemlerin faz değiştiren malzeme esaslı pasif termal korunumu sırasında FDM bünyesine aktarılan ısının bir sonraki termal korumaya hazır hale getirilmesi için uzaklaştırılması işlemlerine odaklanmıştır. Başka bir ifadeyle belirli bir süre ısı depolanmış (şarj) FDM’nin soğuma performansları (deşarj) FDM üzerinde uygulanan farklı iyileştirme teknikleri açısından karşılaştırılmıştır. Bu amaçla öncelikle FDM içerisine farklı sayıda alüminyum kanat eklemesi ile elde edilen Kanat/FDM termal koruma sistemleri elde edilmiştir. Benzer biçimde FDM içerisine kütlece %1 ve %3 oranlarında yüksek ısıl iletkenliğe sahip karbon tabanlı nanoparçacık eklenmesiyle elde edilen Nanoparçacık/FDM termal koruma sistemleri oluşturulmuştur. Elde edilen Kanat/FDM ve Nanoparçacık/FDM termal koruma sistemlerinin soğuma performansları maksimum yüzey sıcaklığı ve maksimum yüzey sıcaklık farkı kriterleri açısından değerlendirilmiştir. Sonuçlar RT-44 termal korumasının performansı ile karşılaştırmalı olarak verilmiştir. FDM ile karşılaştırıldığında en iyi soğuma performansı %10.5 ile altı kanat eklenmiş FDM termal korumasına aittir. Nanoparçacık/Kanat/FDM hibrit termal korumasında bileşenlerin soğuma performansı için herhangi bir sinerjik etki oluşturmadıkları ve asıl katkının kanatlar tarafından sağlandığı belirlenmiştir.

Kaynakça

  • Acır, A., & Emin Canlı, M. (2018). Investigation of fin application effects on melting time in a latent thermal energy storage system with phase change material (PCM). Applied Thermal Engineering, 144(September), 1071–1080. https://doi.org/ 10.1016/j.applthermaleng.2018.09.013
  • Buyruk, E., & Karabulut, K. (2020). Research of Heat Transfer Augmentation in Plate Fin Heat Exchangers Having Different Fin Types. Journal of Engineering Thermophysics, 29(2), 316–330. https://doi.org/10.1134/S1810232820020137
  • Chen, Y. J., Nguyen, D. D., Shen, M. Y., Yip, M. C., & Tai, N. H. (2013). Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2012.08.010
  • Cheng, W. L., Mei, B. J., Liu, Y. N., Huang, Y. H., & Yuan, X. D. (2011). A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: An experimental investigation. Energy, 36(10), 5797–5804. https://doi.org/10.1016/j.energy.2011.08.050
  • Chinnasamy, V., & Cho, H. (2022). Thermophysical investigation of metallic nanocomposite phase change materials for indoor thermal management. International Journal of Energy Research, 46(6), 7626–7641. https://doi.org/10.1002 /er.7664
  • Du, K., Calautit, J., Eames, P., & Wu, Y. (2021). A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat supply. Renewable Energy, 168, 1040–1057. https://doi.org/10.1016/j.renene.2020.12.057
  • Fan, L. W., Fang, X., Wang, X., Zeng, Y., Xiao, Y. Q., Yu, Z. T., Xu, X., Hu, Y. C., & Cen, K. F. (2013). Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Applied Energy. https://doi.org/10.1016/j.apenergy.2013.04.043
  • Hosseinizadeh, S. F., Tan, F. L., & Moosania, S. M. (2011). Experimental and numerical studies on performance of PCM-based heat sink with different con fi gurations of internal fi ns q. Applied Thermal Engineering, 31(17–18), 3827–3838. https://doi.org/10.1016/j.applthermaleng.2011.07.031
  • Huang, M. J., Eames, P. C., Norton, B., & Hewitt, N. J. (2011). Solar Energy Materials & Solar Cells Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Solar Energy Materials and Solar Cells, 95(7), 1598–1603. https://doi.org/10.1016/j.solmat.2011.01.008
  • Kaizawa, A., Maruoka, N., Kawai, A., Kamano, H., Jozuka, T., Senda, T., & Akiyama, T. (2008). Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 44(7), 763–769. https://doi.org/10.1007/s00231-007-0311-2
  • Karabulut, K. (2023). HEAT TRANSFER INCREMENT STUDY TAKING INTO CONSIDERATION FIN LENGTHS FOR CuO-WATER NANOFLUID IN CROSS FLOW-IMPINGING JET FLOW CHANNELS. Thermal Science, 27(6), 4345–4360. https://doi.org/10.2298/TSCI221203035K
  • Karabulut, K., Buyruk, E., & Kilinc, F. (2018). Grafen Oksit Nanoparçacıkları İçeren Nanoakışkanın Taşınım Isı Transferi ve Basınç Düşüşü Artışı Üzerindeki Etkisinin Düz Bir Boruda Deneysel Olarak Araştırılması. 59(690), 45–67.
  • Karabulut, K., Buyruk, E., & Kilinc, F. (2020). Experimental and numerical investigation of convection heat transfer in a circular copper tube using graphene oxide nanofluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(5), 1–16. https://doi.org/10.1007/s40430-020-02319-0
  • Kurs, B. (2024). Exploring the impact of inner and middle channel geometries on the melting rate of PCM-metal foam composition in a triplex tube heat exchanger. 51(April). https://doi.org/10.1016/j.tsep.2024.102621
  • Kurşun, B., & Balta, M. (2023). Evaluation of the different inner and outer channel geometry combinations for optimum melting and solidification performance in double pipe energy storage with phase change material: A numerical study. Journal of Energy Storage, 65(January). https://doi.org/10.1016/j.est.2023.107250
  • Mondieig, D., Rajabalee, F., Laprie, A., Oonk, H. A. J., Calvet, T., & Cuevas-Diarte, M. A. (2003). Protection of temperature sensitive biomedical products using molecular alloys as phase change material. Transfusion and Apheresis Science, 28(2), 143–148. https://doi.org/10.1016/S1473-0502(03) 00016-8
  • Ping, P., Peng, R., Kong, D., Chen, G., & Wen, J. (2018). Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment. Energy Conversion and Management, 176(August), 131–146. https://doi.org/10.1016/j. enconman.2018.09.025
  • Riahi, S., Jovet, Y., Saman, W. Y., Belusko, M., & Bruno, F. (2019). Sensible and latent heat energy storage systems for concentrated solar power plants, exergy efficiency comparison. Solar Energy, 180(August 2018), 104–115. https://doi.org/10.1016/j.solener.2018.12.072
  • Sarier, N., & Onder, E. (2012). Organic phase change materials and their textile applications: An overview. Thermochimica Acta, 540, 7–60. https://doi.org/10.1016/j.tca.2012.04.013
  • Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2007.10.005
  • Temel, Ü. N., & İ, B. Y. Ç. İ. F. T. Ç. (2018). DETERMINATION OF THERMAL PROPERTIES OF A82 ORGANIC PHASE CHANGE MATERIAL EMBEDDED WITH DIFFERENT TYPE NANOPARTICLES LIST OF SEYMBOLS. 75–85.
  • Tian, L. L., Liu, X., Chen, S., & Shen, Z. G. (2020). Effect of fin material on PCM melting in a rectangular enclosure. Applied Thermal Engineering, 167(April 2019). https://doi.org/10. 1016/j.applthermaleng.2019.114764
  • Wang, S. M., Matiašovský, P., Mihálka, P., & Lai, C. M. (2018). Experimental investigation of the daily thermal performance of a mPCM honeycomb wallboard. Energy and Buildings, 159, 419–425. https://doi.org/10.1016/j.enbuild.2017.10. 080
  • Yuan, Y., Li, T., Zhang, N., Cao, X., & Yang, X. (2016). Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-015-5173-0
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Enerjisi Depolama, Enerji, Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Araştırma Makaleleri
Yazarlar

Ahmet Can Çapar 0000-0002-5916-6334

Adnan Öztürk 0000-0001-6371-0577

Aydın Demir

Ümit Nazlı Temel 0000-0001-5053-5124

Erken Görünüm Tarihi 23 Aralık 2024
Yayımlanma Tarihi 26 Aralık 2024
Gönderilme Tarihi 7 Ağustos 2024
Kabul Tarihi 24 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 3 Sayı: 2

Kaynak Göster

APA Çapar, A. C., Öztürk, A., Demir, A., Temel, Ü. N. (2024). Farklı Termal İyileştirmeler Uygulanmış Faz Değiştiren Malzeme Esaslı Termal Koruma Sistemlerinin Deşarj Performanslarının Karşılaştırılması. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, 3(2), 44-54. https://doi.org/10.69560/cujast.1529209
AMA Çapar AC, Öztürk A, Demir A, Temel ÜN. Farklı Termal İyileştirmeler Uygulanmış Faz Değiştiren Malzeme Esaslı Termal Koruma Sistemlerinin Deşarj Performanslarının Karşılaştırılması. CUJAST. Aralık 2024;3(2):44-54. doi:10.69560/cujast.1529209
Chicago Çapar, Ahmet Can, Adnan Öztürk, Aydın Demir, ve Ümit Nazlı Temel. “Farklı Termal İyileştirmeler Uygulanmış Faz Değiştiren Malzeme Esaslı Termal Koruma Sistemlerinin Deşarj Performanslarının Karşılaştırılması”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi 3, sy. 2 (Aralık 2024): 44-54. https://doi.org/10.69560/cujast.1529209.
EndNote Çapar AC, Öztürk A, Demir A, Temel ÜN (01 Aralık 2024) Farklı Termal İyileştirmeler Uygulanmış Faz Değiştiren Malzeme Esaslı Termal Koruma Sistemlerinin Deşarj Performanslarının Karşılaştırılması. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3 2 44–54.
IEEE A. C. Çapar, A. Öztürk, A. Demir, ve Ü. N. Temel, “Farklı Termal İyileştirmeler Uygulanmış Faz Değiştiren Malzeme Esaslı Termal Koruma Sistemlerinin Deşarj Performanslarının Karşılaştırılması”, CUJAST, c. 3, sy. 2, ss. 44–54, 2024, doi: 10.69560/cujast.1529209.
ISNAD Çapar, Ahmet Can vd. “Farklı Termal İyileştirmeler Uygulanmış Faz Değiştiren Malzeme Esaslı Termal Koruma Sistemlerinin Deşarj Performanslarının Karşılaştırılması”. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3/2 (Aralık 2024), 44-54. https://doi.org/10.69560/cujast.1529209.
JAMA Çapar AC, Öztürk A, Demir A, Temel ÜN. Farklı Termal İyileştirmeler Uygulanmış Faz Değiştiren Malzeme Esaslı Termal Koruma Sistemlerinin Deşarj Performanslarının Karşılaştırılması. CUJAST. 2024;3:44–54.
MLA Çapar, Ahmet Can vd. “Farklı Termal İyileştirmeler Uygulanmış Faz Değiştiren Malzeme Esaslı Termal Koruma Sistemlerinin Deşarj Performanslarının Karşılaştırılması”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, c. 3, sy. 2, 2024, ss. 44-54, doi:10.69560/cujast.1529209.
Vancouver Çapar AC, Öztürk A, Demir A, Temel ÜN. Farklı Termal İyileştirmeler Uygulanmış Faz Değiştiren Malzeme Esaslı Termal Koruma Sistemlerinin Deşarj Performanslarının Karşılaştırılması. CUJAST. 2024;3(2):44-5.