Araştırma Makalesi
BibTex RIS Kaynak Göster

Düzenleyici Ekosistem Hizmetlerinde Toprak Erozyonunun Haritalanması: Göksu Havzası Örneği

Yıl 2021, Cilt: 36 Sayı: 2, 409 - 419, 16.08.2021
https://doi.org/10.21605/cukurovaumfd.982792

Öz

Toprak erozyonu karasal ekosistemlerde önemli bir küresel çevre sorunu olarak, çevresel kaliteyi ve sosyal ekonomiyi önemli ölçüde etkiler. Karasal ekosistemler, toprağı rüzgar ve su erozyonundan koruyarak insanlara insan refahını sağlayan temel ekosistem hizmetlerinden biri olan toprak erozyon kontrol hizmeti sağlamaktadır. Genellikle yanlış arazi kullanımı ve antropojenik etkilerden dolayı özellikle eğimli arazilerde toprağın tutucu bitki örtüsü azalması ya da yok olması sonucunda topraklar aşınmakta ve taşınmaktadır. Göksu havzası, ülkemizde önemli şiddetli toprak erozyonuna maruz kalan bölgelerinden birisidir. Bu çalışmada bir ekosistem hizmeti olarak erozyon düzenlemesini haritalamak için RUSLE erozyon modelleme yöntemini kullanarak Göksu Havzası için yıllık toprak kaybının belirlemesi ve sürdürülebilir yönetim/planlama çalışmalarına entegrasyonu amaçlanmıştır. RUSLE yönteminde Yağış faktörü (R), toprak erozyon duyarlılığı faktörü (K), Eğim uzunluğu faktörü (L), eğim dikliği faktörü (S), Arazi Örtüsü ve Alan Kullanım Faktörleri (C) ve erozyon kontrol faktörü (P) kullanılarak bir hesaplama yapılmaktadır. Elde edilen sonuçlar, ekosistem hizmetlerini sağlamak için faktörlerin potansiyelini ortaya koymakta ve peyzaj yönetimi için önemli bilgiler sağlamaktadır.

Kaynakça

  • 1. Blanco-Canqui, H., Lal, R., 2008. Principles of Soil Conservation and Management. Springer, Dordrecht, The Ohio State University, Columbus, OH, USA, ISBN: 978-1-4020- 8708-0, 129.
  • 2. Daily, G.C., Matson, P.A., Vitousek, P.M., 1997. Ecosystem Services Supplied By Soil. In G.C. Daily, ed. Nature Services: Societal Dependence on Natural Ecosystems, Island Press, Washington, DC, 113–132.
  • 3. Erkal, T., Yıldırım, Ü., 2012. Soil Erosion Risk Assessment in the Sincanlı Sub-watershed of the Akarçay Basin (Afyonkarahisar, Turkey) Using the Universal Soil Loss Equation (USLE). Ekoloji, 21(84), 18-29.
  • 4. ÇMTUEP, 2005. Çölleşme ile Mücadele Türkiye Ulusal Eylem Planı, Çölleşme ile Mücadele Ulusal Koordinasyon Birimi, Çevre ve Orman Bakanlığı Yayınları No: 250, Ankara, 124.
  • 5. Berberoglu, S., Cilek, A., Kirkby, M., Irvine, B., Donmez, C., 2020. Spatial and Temporal Evaluation of Soil Erosion in Turkey Under Climate Change Scenarios Using the Pan- european Soil Erosion Risk Assessment (PESERA) Model. Environmental Monitoring and Assessment, 192(8), 491.
  • 6. Millenium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Biodiversity Synthesis, Millennium Ecosystem Assessment, Island Press, Washington, DC.
  • 7. Lal, R., 1994. Soil Erosion Research Methods. St. Lucie Press. Soil and Water Conservation Society, Delray Beach, Ankeny, 340.
  • 8. Kadupitiya, H.K., 2002. Empirical Evaluation and Comparative Study of Use of Erosion Modelling in Small Catchments in Naivasha, Kenya, Master Tezi, ITC, Enschede.
  • 9. Petter, P., 1992. GIS and Remote Sensing for Soil Erosion Studies in Semi-arid Environments, Doktora Tezi, University of Lund, Lund, 250.
  • 10. Güney, Y., 2018. Frekans Oranı Yönteminin Erozyon Duyarlılık Analizinde Kullanımı: Selendi Çayı Havzası (Manisa) Örneği, Toprak Bilimi ve Bitki Besleme Dergisi, 6(2), 73-85.
  • 11. Cilek, A., Berberoglu, S., Donmez, C., Unal Cilek, M., 2020. Generation of High- Resolution 3-D Maps for Landscape Planning and Design Using UAV Technologies. Journal of Digital Landscape Architecture, 5, 275–284.
  • 12. Elirehema, Y.S., 2001. Soil Water Erosion Modeling in Selected Watersheds in Southern Spain, IFA, ITC, Enschede, 42.
  • 13. Ünal, A., 1989. Karaman-Mut Karayolu Doğusunda Kalan Bölgenin Fitososyolojik ve Fitoekolojik Yönden Araştırılması, Selçuk Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, Konya, 150.
  • 14. Doğan, O., Cebel, H., Küçükçakar, N., Akgül, S., 2000. Türkiye Büyük Toprak Grupları “K” Faktörleri, Ankara Araştırma Enstitüsü Müdürlüğü Yayınları, Ankara.
  • 15. Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Agriculture Handbook 703 USDA, Washington.
  • 16. Naqvi, H.R., Devi, L.M., Siddiqui, M.A., 2012. Soil Lossprediction and Prioritization Based on Revised Universal Soil Lossestimation (RUSLE) Model Using Geospatial Technique. International Journal of Environmental Protection, 2(3), 39–43.
  • 17. Wishmeier, W.H., Smith, D.D., 1978. Predicting Rainfall Erosion Losses: a Guide to Conservation Planning USDA Agricultural Handbook, ABD Tarım Bakanlığı, Washington, DC, ABD.
  • 18. Hutchinson, M., 2007. ANUSPLIN Version 4.3.
  • 19. Moore, I.D., Burch, G.J. 1986a. Modeling Erosion and Deposition, Topographic Effects Trans. Am. Soc. Agric. Eng. 29, 1624–1630.
  • 20. Moore, I.D, Burch, G.J., 1986b. Physical Basis of the Length-Slope Factor in the Universal Soil Loss Equation, Soil Sci. Soc. Am. J., 50, 1294–1298.
  • 21. Mitasova, H., Hofierka, J., Zlocha, M., Iverson, L.R., 1996. Modelling Topographic Potential for Erosion and Deposition Using GIS, Int. I. Geographical Information Systems, 10(5), 629-641.
  • 22. Toy, T.J., Foster, G.R., Renard, K.G., 1999. RUSLE for Mining, Construction and Reclamation Lands, Journal of Soil and Water Conservation, 54(2), 462-467.
  • 23. Van der Knijff, J.M., Jones, R.J.A., Montanarella, L., 2000. Soil Erosion Risk Assessment in Europe, EUR 19044 EN, Office for Official Publications of the European Communities, Luxembourg.
  • 24. Van Leeuwen, W.J.D., Sammons, G., 2004. Vegetation Dynamics and Soil Erosion Modeling Using Remotely Sensed Data (MODIS) and GIS, Tenth Biennial USDA Forest Service Remote Sensing Applications Conference, 5–9 Nisan 2004, UT. US Department of Agriculture Forest Service Remote Sensing Applications Center, Salt Lake City.
  • 25. Wachal, D.J., Banks, K.E., 2007. Integration GIS and Erosion Modeling: A Tool for Watershed Management, ESRI 2007 International User Conference, No: UC1038.
  • 26. Tağıl, Ş., 2007. Tuzla Çayı Havzasında (Biga Yarımadası) CBS-Tabanlı RUSLE Modeli kullanarak Arazi Degradasyonu Risk Değerlendirmesi, Ekoloji, 60, 11-20.
  • 27. Erdoğan, M.A., Esbah, H., Berberoglu, S., 2016. Erosion Risk Mapping Using RUSLE with GIS: Case Study of Büyük Menderes River Basin of Turkey , Int. J. of Safety and Security Eng., 6(2), 132-140.
  • 28. Çilek, A., Berberoğlu, S., Dönmez, C., 2014. PESERA ve RUSLE Erozyon Modellerinin Akdeniz ve Ege Havzaları Örneğinde Karşılaştırılması. V. Uzaktan Algılama ve CBS Sempozyumu, İstanbul, Türkiye.
  • 29. United States Department of Agriculture, USDA, 1981. Handbook no. 282.

Mapping Soil Erosion in Regulating Ecosystem Services: The Case of Göksu Basin

Yıl 2021, Cilt: 36 Sayı: 2, 409 - 419, 16.08.2021
https://doi.org/10.21605/cukurovaumfd.982792

Öz

Soil erosion is a major global environmental problem in terrestrial ecosystems, significantly affecting environmental quality and social economy. Terrestrial ecosystems provide soil erosion control service, one of the basic ecosystem services that provide human well-being to people by protecting the soil from wind and water erosion. Soils are eroded and transported due to the decrease or disappearance of the soil conservative vegetation, especially in sloping lands, due to generally inappropriate land use and anthropogenic effects. Göksu basin is one of the regions in our country exposed to severe soil erosion. This study aims to determine the annual soil loss for Göksu Basin by using the RUSLE erosion modelling method to map erosion regulation as an ecosystem service and its integration into sustainable management/planning studies. In the RUSLE method, a calculation is made using the precipitation factor (R), soil erosion susceptibility factor (K), slope length factor (L), slope steepness factor (S), Land Cover and Area Use Factors (C) and erosion control factor (P). The results obtained reveal the potential of factors to provide ecosystem services and provide critical information for landscape management.

Kaynakça

  • 1. Blanco-Canqui, H., Lal, R., 2008. Principles of Soil Conservation and Management. Springer, Dordrecht, The Ohio State University, Columbus, OH, USA, ISBN: 978-1-4020- 8708-0, 129.
  • 2. Daily, G.C., Matson, P.A., Vitousek, P.M., 1997. Ecosystem Services Supplied By Soil. In G.C. Daily, ed. Nature Services: Societal Dependence on Natural Ecosystems, Island Press, Washington, DC, 113–132.
  • 3. Erkal, T., Yıldırım, Ü., 2012. Soil Erosion Risk Assessment in the Sincanlı Sub-watershed of the Akarçay Basin (Afyonkarahisar, Turkey) Using the Universal Soil Loss Equation (USLE). Ekoloji, 21(84), 18-29.
  • 4. ÇMTUEP, 2005. Çölleşme ile Mücadele Türkiye Ulusal Eylem Planı, Çölleşme ile Mücadele Ulusal Koordinasyon Birimi, Çevre ve Orman Bakanlığı Yayınları No: 250, Ankara, 124.
  • 5. Berberoglu, S., Cilek, A., Kirkby, M., Irvine, B., Donmez, C., 2020. Spatial and Temporal Evaluation of Soil Erosion in Turkey Under Climate Change Scenarios Using the Pan- european Soil Erosion Risk Assessment (PESERA) Model. Environmental Monitoring and Assessment, 192(8), 491.
  • 6. Millenium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Biodiversity Synthesis, Millennium Ecosystem Assessment, Island Press, Washington, DC.
  • 7. Lal, R., 1994. Soil Erosion Research Methods. St. Lucie Press. Soil and Water Conservation Society, Delray Beach, Ankeny, 340.
  • 8. Kadupitiya, H.K., 2002. Empirical Evaluation and Comparative Study of Use of Erosion Modelling in Small Catchments in Naivasha, Kenya, Master Tezi, ITC, Enschede.
  • 9. Petter, P., 1992. GIS and Remote Sensing for Soil Erosion Studies in Semi-arid Environments, Doktora Tezi, University of Lund, Lund, 250.
  • 10. Güney, Y., 2018. Frekans Oranı Yönteminin Erozyon Duyarlılık Analizinde Kullanımı: Selendi Çayı Havzası (Manisa) Örneği, Toprak Bilimi ve Bitki Besleme Dergisi, 6(2), 73-85.
  • 11. Cilek, A., Berberoglu, S., Donmez, C., Unal Cilek, M., 2020. Generation of High- Resolution 3-D Maps for Landscape Planning and Design Using UAV Technologies. Journal of Digital Landscape Architecture, 5, 275–284.
  • 12. Elirehema, Y.S., 2001. Soil Water Erosion Modeling in Selected Watersheds in Southern Spain, IFA, ITC, Enschede, 42.
  • 13. Ünal, A., 1989. Karaman-Mut Karayolu Doğusunda Kalan Bölgenin Fitososyolojik ve Fitoekolojik Yönden Araştırılması, Selçuk Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, Konya, 150.
  • 14. Doğan, O., Cebel, H., Küçükçakar, N., Akgül, S., 2000. Türkiye Büyük Toprak Grupları “K” Faktörleri, Ankara Araştırma Enstitüsü Müdürlüğü Yayınları, Ankara.
  • 15. Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Agriculture Handbook 703 USDA, Washington.
  • 16. Naqvi, H.R., Devi, L.M., Siddiqui, M.A., 2012. Soil Lossprediction and Prioritization Based on Revised Universal Soil Lossestimation (RUSLE) Model Using Geospatial Technique. International Journal of Environmental Protection, 2(3), 39–43.
  • 17. Wishmeier, W.H., Smith, D.D., 1978. Predicting Rainfall Erosion Losses: a Guide to Conservation Planning USDA Agricultural Handbook, ABD Tarım Bakanlığı, Washington, DC, ABD.
  • 18. Hutchinson, M., 2007. ANUSPLIN Version 4.3.
  • 19. Moore, I.D., Burch, G.J. 1986a. Modeling Erosion and Deposition, Topographic Effects Trans. Am. Soc. Agric. Eng. 29, 1624–1630.
  • 20. Moore, I.D, Burch, G.J., 1986b. Physical Basis of the Length-Slope Factor in the Universal Soil Loss Equation, Soil Sci. Soc. Am. J., 50, 1294–1298.
  • 21. Mitasova, H., Hofierka, J., Zlocha, M., Iverson, L.R., 1996. Modelling Topographic Potential for Erosion and Deposition Using GIS, Int. I. Geographical Information Systems, 10(5), 629-641.
  • 22. Toy, T.J., Foster, G.R., Renard, K.G., 1999. RUSLE for Mining, Construction and Reclamation Lands, Journal of Soil and Water Conservation, 54(2), 462-467.
  • 23. Van der Knijff, J.M., Jones, R.J.A., Montanarella, L., 2000. Soil Erosion Risk Assessment in Europe, EUR 19044 EN, Office for Official Publications of the European Communities, Luxembourg.
  • 24. Van Leeuwen, W.J.D., Sammons, G., 2004. Vegetation Dynamics and Soil Erosion Modeling Using Remotely Sensed Data (MODIS) and GIS, Tenth Biennial USDA Forest Service Remote Sensing Applications Conference, 5–9 Nisan 2004, UT. US Department of Agriculture Forest Service Remote Sensing Applications Center, Salt Lake City.
  • 25. Wachal, D.J., Banks, K.E., 2007. Integration GIS and Erosion Modeling: A Tool for Watershed Management, ESRI 2007 International User Conference, No: UC1038.
  • 26. Tağıl, Ş., 2007. Tuzla Çayı Havzasında (Biga Yarımadası) CBS-Tabanlı RUSLE Modeli kullanarak Arazi Degradasyonu Risk Değerlendirmesi, Ekoloji, 60, 11-20.
  • 27. Erdoğan, M.A., Esbah, H., Berberoglu, S., 2016. Erosion Risk Mapping Using RUSLE with GIS: Case Study of Büyük Menderes River Basin of Turkey , Int. J. of Safety and Security Eng., 6(2), 132-140.
  • 28. Çilek, A., Berberoğlu, S., Dönmez, C., 2014. PESERA ve RUSLE Erozyon Modellerinin Akdeniz ve Ege Havzaları Örneğinde Karşılaştırılması. V. Uzaktan Algılama ve CBS Sempozyumu, İstanbul, Türkiye.
  • 29. United States Department of Agriculture, USDA, 1981. Handbook no. 282.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ahmet Çilek 0000-0002-6781-2658

Yayımlanma Tarihi 16 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 36 Sayı: 2

Kaynak Göster

APA Çilek, A. (2021). Düzenleyici Ekosistem Hizmetlerinde Toprak Erozyonunun Haritalanması: Göksu Havzası Örneği. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(2), 409-419. https://doi.org/10.21605/cukurovaumfd.982792