Araştırma Makalesi
BibTex RIS Kaynak Göster

Mg-2,5Al-1,0Sn-0,3Mn-0,4La-1,33Gd Mg Alaşımının Yüksek Sıcaklık Aşınma Davranışına Haddeleme Hızının Etkisinin İncelenmesi

Yıl 2022, Cilt: 37 Sayı: 2, 377 - 382, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146091

Öz

Bu çalışmanın amacı otomotiv ve uzay taşıtlarında kullanım potansiyeli yüksek olan hafif magnezyum (Mg) alaşımların yüksek sıcaklık aşınma davranışına farklı haddeleme hızlarının etkisini incelemektir. Sürtünme nedeniyle oluşan veya kullanım çevresine bağlı artan sıcaklığın aşınmaya maruz kalan fren balataları gibi uygulamalarda Mg alaşımın nasıl tepki verdiğini anlamak önem arz etmektedir. Yapısal olarak geliştirilmiş nadir toprak elementi içeren Mg alaşımları buna çözüm olarak düşünülmüştür. Burada yüksek sıcaklığa dayanımı zayıf olan ikincil fazlar yerine yapıda daha kararlı ikincil fazlar oluşturmak esas alınmıştır. Bu amaçla sıcak haddelenmiş Mg-2.5Al-1.0Sn-0.3Mn-0.4La-1.33Gd Mg alaşımına 225°C de aşınma testleri uygulanmıştır. 1.5, 4.7 ve 10 m/dk olmak üzere üç farklı hadde hızıyla elde edilen sac malzemelerin mikroyapısal karakterizasyonu ışık optik mikroskop (LOM) ve taramalı elektron mikroskobu (SEM) vasıtasıyla incelenmiştir. Hadde hızına bağlı ikizlenmeler ve yeniden kristalleşen taneler elde edilmiştir. Sıcak aşınma davranışının mikroyapıya bağlı olarak değiştiği ve oluşan sert ikincil fazların daha yumuşak olan matrisle birleşerek aşınma direncine katkı sağladığı anlaşılmıştır. Artan hadde hızına bağlı aşınma hızında düşüş meydana gelmiştir. 10m/dk ve 1.5m/dk hadde hızlarının aşınma hızları karşılaştırıldığında iki kattan daha fazla fark olduğu görülmüştür. Aşınma mekanizmaları incelenen aşınmış yüzeylerin plastik akma, adhezif ve plastik deformasyon türünde mekanizmalara sahip olduğu görülmüştür.

Kaynakça

  • 1. Çuğ, H., Ahlatçı, H., 2017. Effect of Zn and Mn Additions on the Wear Resistance of Cast Alloy Mg–5% Al–1% Si. Met. Sci. Heat Treat, 59,(3-4), 161-167.
  • 2. Kara, I.H., Incesu, A., 2021. Microstructural, Mechanical, and Tribological Properties of Mg-3Al-1Sn-1Nd-Mn Alloy. J. Mater. Eng. Perform, 30(3), 1674-1682.
  • 3. Asl, K., Masoudi, A., Khomamizadeh, F., 2010. The Effect of Different Rare Earth Elements Content on Microstructure, Mechanical and Wear Behavior of Mg–Al–Zn Alloy. Mater. Sci. Eng. A, 527(7-8), 2027-2035.
  • 4. Kumar, A., Meenashisundaram, G., Manakari, V., Parande, G., Gupta, M., 2017. Lanthanum Effect on Improving CTE, Damping, Hardness and Tensile Response of Mg-3Al Alloy, J. Alloys Compd, 695, 3612-3620.
  • 5. Asl, K.M., Tari, A., Khomamizadeh, F., 2009. The Effect of Different Content of Al, RE and Si Element on the Microstructure, Mechanical and Creep Properties of Mg–Al Alloys. Mater. Sci. Eng. A, 523(1-2), 1-6.
  • 6. Wang, C., Zeng, L., Ding, W., Liang, T., 2021. Effects of Minor RE (Y, La) on Microstructure and Corrosion Behavior of TX31 Alloys. J. Mater. Res. Technol.,14, 69-80.
  • 7. Yang, M., Zhu, Y., Liang, X., Pan, F., 2011. Effects of Gd Addition on As-cast Microstructure and Mechanical Properties of Mg–3Sn–2Ca Magnesium Alloy. Mat. Sci. Eng. A, 528, 1721-1726. 8. ASTM, 1968. Evaluation of Wear Testing, American Society for Testing and Materials, San Francisco.
  • 9. Zhang, Q., Li, Q., Chen, X., 2021. The Effects of Sn Content on the Corrosion Behavior and Mechanical Properties of Mg–5Gd–3Y–xSn–0.5Zr alloys, Royal Society of Chemistry, 11, 1332–1342.
  • 10. Yan, C., Xin, Y., Chen, X., Chu, P., Liu, C., Guan, B., Huang, X., Liu, Q., 2021. Evading Strength-corrosion Tradeoff in Mg Alloys Via Dense Ultrafine Twins. Nat. Commun., 12, 4616.
  • 11. Huang, W., Chen, J., Zhang, R., Yang, X., Jiang, L., Xiao, Z., Liu, Y., 2022. Effect of Deformation Modes on Continuous Dynamic Recrystallization of Extruded AZ31 Mg Alloy. J. Alloys Compd., 897, 163086.
  • 12. Jahedi, M., McWilliams, B.A., Moy, P., Knezevic, M., 2017. Deformation Twinning in Rolled WE43-T5 Rare Earth Magnesium Alloy: Influence on Strain Hardening and Texture Evolution, Acta Materialia, 131, 221-232.
  • 13. Lim, S., Ashby, M., Brunton, J., 1987. Wear-rate Transitions and Their Relationship to Wear Mechanisms. Acta Metallurgica, 35,(6), 1343-1348.
  • 14. Myshkin, N.K., Kim, C.K., Petrokovets, M.I., 1997. Introduction to Tribology, Cheong Moon Gak, Seoul.
  • 15. Aydin, F., Turan, M.E., 2020. The Effect of Boron Nitride on Tribological Behavior of Mg Matrix Composite at Room and Elevated Temperatures. ASME. J. Tribol.,142(1): 011601.
  • 16. Demirdal, S., Aydın, F., 2022. The Influence of Low-cost Eggshell on the Wear and Electrochemical Corrosion Behaviour of Novel Pure Mg Matrix Composites. Mater. Chem. Phys., 277, 125520.

Investigation of the Effect of Rolling Speed on High Temperature Wear Behavior of Mg-2.5Al-1.0Sn-0.3Mn-0.4La-1.33Gd Mg Alloy

Yıl 2022, Cilt: 37 Sayı: 2, 377 - 382, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146091

Öz

The aim of this study is to examine the effect of different rolling speeds on the high temperature wear behavior of light magnesium (Mg) alloys, which have high potential for use in automotive and space vehicles. It is important to understand how the Mg alloy responds in applications such as brake pads, which are subject to wear due to friction or increased temperature due to the usage environment. Microstructurally enhanced Mg alloys containing rare earth elements have been considered as a solution to this. Here, it is based on creating more stable secondary phases to high temperature conditions in the structure instead of secondary phases with poor resistance to high temperatures. For this purpose, wear tests were applied to hot rolled Mg-2.5Al-1.0Sn-0.3Mn-0.4La-1.33Gd Mg alloy at 225°C. The microstructural characterization of the sheet materials obtained at three different rolling speeds, 1.5, 4.7 and 10 m/min, was investigated by means of light optical microscope (LOM) and scanning electron microscope (SEM). Twinning and recrystallized grains were obtained depending on the rolling speed. It has been understood that the hot wear behavior changes depending on the microstructure and the formed hard secondary phases combine with the softer matrix to contribute to the wear resistance. There was a decrease in the wear rate due to the increasing rolling speed. When the wear rates of 10m/min and 1.5m/min rolling speeds are compared, it has been seen that there is more than two. It was observed that the worn surfaces, whose wear mechanisms were examined, had mechanisms such as plastic flow, adhesive and plastic deformation.

Kaynakça

  • 1. Çuğ, H., Ahlatçı, H., 2017. Effect of Zn and Mn Additions on the Wear Resistance of Cast Alloy Mg–5% Al–1% Si. Met. Sci. Heat Treat, 59,(3-4), 161-167.
  • 2. Kara, I.H., Incesu, A., 2021. Microstructural, Mechanical, and Tribological Properties of Mg-3Al-1Sn-1Nd-Mn Alloy. J. Mater. Eng. Perform, 30(3), 1674-1682.
  • 3. Asl, K., Masoudi, A., Khomamizadeh, F., 2010. The Effect of Different Rare Earth Elements Content on Microstructure, Mechanical and Wear Behavior of Mg–Al–Zn Alloy. Mater. Sci. Eng. A, 527(7-8), 2027-2035.
  • 4. Kumar, A., Meenashisundaram, G., Manakari, V., Parande, G., Gupta, M., 2017. Lanthanum Effect on Improving CTE, Damping, Hardness and Tensile Response of Mg-3Al Alloy, J. Alloys Compd, 695, 3612-3620.
  • 5. Asl, K.M., Tari, A., Khomamizadeh, F., 2009. The Effect of Different Content of Al, RE and Si Element on the Microstructure, Mechanical and Creep Properties of Mg–Al Alloys. Mater. Sci. Eng. A, 523(1-2), 1-6.
  • 6. Wang, C., Zeng, L., Ding, W., Liang, T., 2021. Effects of Minor RE (Y, La) on Microstructure and Corrosion Behavior of TX31 Alloys. J. Mater. Res. Technol.,14, 69-80.
  • 7. Yang, M., Zhu, Y., Liang, X., Pan, F., 2011. Effects of Gd Addition on As-cast Microstructure and Mechanical Properties of Mg–3Sn–2Ca Magnesium Alloy. Mat. Sci. Eng. A, 528, 1721-1726. 8. ASTM, 1968. Evaluation of Wear Testing, American Society for Testing and Materials, San Francisco.
  • 9. Zhang, Q., Li, Q., Chen, X., 2021. The Effects of Sn Content on the Corrosion Behavior and Mechanical Properties of Mg–5Gd–3Y–xSn–0.5Zr alloys, Royal Society of Chemistry, 11, 1332–1342.
  • 10. Yan, C., Xin, Y., Chen, X., Chu, P., Liu, C., Guan, B., Huang, X., Liu, Q., 2021. Evading Strength-corrosion Tradeoff in Mg Alloys Via Dense Ultrafine Twins. Nat. Commun., 12, 4616.
  • 11. Huang, W., Chen, J., Zhang, R., Yang, X., Jiang, L., Xiao, Z., Liu, Y., 2022. Effect of Deformation Modes on Continuous Dynamic Recrystallization of Extruded AZ31 Mg Alloy. J. Alloys Compd., 897, 163086.
  • 12. Jahedi, M., McWilliams, B.A., Moy, P., Knezevic, M., 2017. Deformation Twinning in Rolled WE43-T5 Rare Earth Magnesium Alloy: Influence on Strain Hardening and Texture Evolution, Acta Materialia, 131, 221-232.
  • 13. Lim, S., Ashby, M., Brunton, J., 1987. Wear-rate Transitions and Their Relationship to Wear Mechanisms. Acta Metallurgica, 35,(6), 1343-1348.
  • 14. Myshkin, N.K., Kim, C.K., Petrokovets, M.I., 1997. Introduction to Tribology, Cheong Moon Gak, Seoul.
  • 15. Aydin, F., Turan, M.E., 2020. The Effect of Boron Nitride on Tribological Behavior of Mg Matrix Composite at Room and Elevated Temperatures. ASME. J. Tribol.,142(1): 011601.
  • 16. Demirdal, S., Aydın, F., 2022. The Influence of Low-cost Eggshell on the Wear and Electrochemical Corrosion Behaviour of Novel Pure Mg Matrix Composites. Mater. Chem. Phys., 277, 125520.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İsmail Hakkı Kara 0000-0001-8425-5649

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 2

Kaynak Göster

APA Kara, İ. H. (2022). Mg-2,5Al-1,0Sn-0,3Mn-0,4La-1,33Gd Mg Alaşımının Yüksek Sıcaklık Aşınma Davranışına Haddeleme Hızının Etkisinin İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 377-382. https://doi.org/10.21605/cukurovaumfd.1146091