Araştırma Makalesi
BibTex RIS Kaynak Göster

Biyogazla Birlikte Oluşan Diğer Ürünlerin Araştırılması

Yıl 2022, Cilt: 37 Sayı: 2, 499 - 508, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146491

Öz

Gelişmekte olan ülkelerin enerji tüketimindeki yükselme atmosfere karbondioksit salınımını artırarak küresel ısınmaya sebep olmaktadır. Küresel ısınmaya bağlı olarak ortaya çıkan doğal afetler insanların yaşamlarını olumsuz yönde etkilediklerinden dolayı atmosfere karbondioksit salınımının kontrol altına alınıp sürdürülebilir hale getirilmesi gerekmektedir. Bu sebeple fosil kökenli yakıtlara alternatif kaynaklarının araştırılması zorunlu hale gelmektedir. Rüzgâr enerjisi, biyodizel vb. gibi alternatif biyoyakıtlar içerisindeki alternatif enerji üretim yöntemlerinden birisi de biyogaz üretimidir. Biyogaz üretiminde uygun organik atıklar kullanılarak %35-45 CO2, %55-65 CH4 oranlarda biyogaz karışımı üretilirken eser miktarda CO, H2S, NH3 gibi diğer ürünlerde ortaya çıkmaktadır. Yapılan bu çalışmada biyogaz üretiminde kullanılan sıvı fazda bulunan toplam karbon miktarı, fenolik içerik miktarları, Azot(N), Fosfor(P2O5), Potasyum(K2O), pH, Hümik asit, Fülvik asit ve iletkenlik gibi değerlerin değişimi biyogaz üretimi öncesi ve sonrasında test edilerek belirlenmiştir. Elde edilen sonuçlara göre N, P, K miktarlarında herhangi bir değişim ortaya çıkmazken pH değerinde yükselme, fenolik içerik, toplam karbon içeriği, iletkenlik, Hümik ve Fülvik asit içeriklerinde biyogaz üretim süreci
sonrasında artış meydana geldiği gözlemlenmiştir.

Kaynakça

  • 1. Environmental Protection Agency (EPA), 2021. Understanding Global Warming Potentials https://www.epa.gov/ Erişim Tarihi 02.03.2022.
  • 2. National Aeronautics and Space Administration (NASA) 2021. htpp://www.climate.nasa.gov/ Erişim Tarihi 02.03.2022
  • 3. Lindsey, R., 2021. Climate Change: Atmospheric Carbon Dioxide. In: Dlugokencky E (ed), https://www.climate.gov/ Erişim Tarihi 03.02.2022
  • 4. Masson-Delmotte, V., Zhai, P., Pirani, A. Connors, S.L., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, T.K.M., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B., 2021. Intergovernmental Panel on Climate Change (IPCC) The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
  • 5. Bonneuil, C., Choquet, P. L., Franta, B., 2021. Early Warnings and Emerging Accountability Total’s Responses To Global Warming, 1971– 2021. Global Environmental Change 71, 102386.
  • 6. Paris Antlaşması, Resmi Gazete 2021 https://www.resmigazete.gov.tr/ Erişim Tarihi 03.02.2022.
  • 7. Zhoua, B., Or, S.W., Chan, K.W., Duan, H., Wu, Q., Wang, H., Meng, Y., 2021. Short-Term Prediction of Wind Power and its Ramp Events Based on Semisupervised Generative Adversarial Network. Electrical Power and Energy Systems, 125:106411.
  • 8. Ren, S., Dou, B., Ning, F., 2021. Geothermal Energy Exploitation from Depleted Hightemperature Gas Reservoirs By Recycling CO2: The Superiority and Existing Problems. Geoscience Frontiers, 12:6, 101078.
  • 9. Zhang, Q.L.Y., Mieghem, A.V., Chen, Y.C., Yu, N., Yang, Y., Yin, H., 2020. Design and Experiment of a Sun-powered Smart Building Envelope with Automatic Control. Energy & Buildings 223, 110173.
  • 10. Qaiser, I., 2022. A Comparison of Renewable and Sustainable Energy Sector of the South Asian Countries: An Application of SWOT Methodology. Renewable Energy, 181, 417-425.
  • 11. Sarıbıyık, O.Y., Kılınç, R., 2021. The Investigation of the Alternative Fuel Biogas Potential for Model Town. Europen Journal of Science and Technology, 25, 192-197.
  • 12. Uçar, I.R., Özer, Z., Sarıbıyık, O.Y., 2021. The Investigation of the Waste Effect on Biogas Production. Çukurova University Journal of the Faculty of Engineering, 36, 581-589.
  • 13. Association, S.G., 2021. Basic Data on Biogas. Swedish Gas Technology Centre: Basic Data on Biogas. https://www.energigas.se/ Erişim Tarihi 03.02.2022.
  • 14. Boreka, K., Romaniuk, W., 2020. Biogas Installation for Harvesting Energy and Unitlization of Natural Fertilisers. Sciendo Agricultural Engineering, 24:1-14.
  • 15. Diamantis, V., Eftaxias, A., Stamatelatou, K., Noutsopoulos, C., Vlachokostas, C., Aivasidis, A., 2021. Bioenergy in the Era of Circular Economy: Anaerobic Digestion Technological Solutions to Produce Biogas from Lipid-rich Wastes. Renewable Energy, 168, 438-447.
  • 16. Winquist, E., Rikkonen, P., Pyysiainen, J., Varho, V., 2019. Is Biogas an Energy or a Sustainability Product?-Business Opportunities in the Finnish Biogas Branch. Journal of Cleaner Production, 233, 1344-1354.
  • 17. Bernard, S.S., Srinivasan, T., Suresh, G., Paul, A.I., Fowzan, K.M., Kishore, V.A., 2020. Production of Biogas from Anaerobic Digestion of Vegetable Waste and Cow Dung. Materials Today: Proceedings, 33.
  • 18. Sindhu, R., Binod, P., Pandey, A., Ankaram, S., Duan, Y., Awasthi, M.K., 2019. Chapter 5- Biofuel Production from Biomass: Toward Sustainable Development. Current Developments in Biotechnology and Bioengineering, Elsevier, 79-92.
  • 19. Özcanli, M., Serin, H., Sarıbıyık, O.Y., Aydin, K., Serin, S., 2012. Performance and Emission Studies of Castor Bean (Ricinus Communis) Oil Biodiesel and its Blends with Diesel Fuel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 34, 1808-1814.
  • 20. Sarıbıyık, O.Y., Özcanlı, M., Serin, H., Serin, S., Aydın, K., 2010. Biodiesel Production from Ricinus Communis Oil and its Blends with Soybean Biodiesel. Strojniški Vestnik-Journal of Mechanical Engineering, 56, 811-816.
  • 21. Quiroz, M., Varnero, M.T., Cuevas, J.G., Sierra, H., 2021. Cactus Pear (Opuntia Ficus- Indica) in Areas with Limited Rainfall for the Production of Biogas and Biofertilizer. Journal of Cleaner Production, 289, 125839.
  • 22. Nergiz, U., Sert, B., Cemalettin, A., Sarıbıyık, O.Y., 2021. The Effect of the Light and Feeding on Growth of Algea in Bioreactor. European Journal of Science and Technology, 23, 475-480.
  • 23. Azadbakht, M., Ardebili, S.M.S., Rahmani, M., 2021. Potential for the Production of Biofuels from Agricultural Waste, Livestock, and Slaughterhouse Waste in Golestan Province, Iran. Biomass Conversion and Biorefinery.
  • 24. Bassey, A., James, E., Bassey, A., Em, A., 2013. Four Potentials of Biogas Yield from Cow Dung-CD. European Journal of Experimental Biology 3.
  • 25. Ma, Y., Yin, Y., Liu, Y., 2017. New Insights Into Co-digestion of Activated Sludge and Food Waste: Biogas Versus Biofertilizer. Bioresource Technology, 241, 448–453.
  • 26. Uyar, B.B., Karadağ., M.G., Sanlier, N., Günyel, S., 2013. Toplumumuzda Sıklıkla Kullanılan Bazı Bitkilerin Toplam Fenolik Madde Miktarlarının Saptanması. Gıda, 38, 23-29.
  • 27. Patthamakanokporn, O., Puwastien, P., Nitithamyong, A., Sirichakwal, P.P., 2008. Changes of Antioxidant Activity and Total Phenolic Compounds During Storage of Selected Fruits. Journal of Food Composition and Analysis, 21, 241-248.
  • 28. Martins, G.R., Monteiro, A.F., Amaral, F.R.L., da Silva, A.S.A., 2021. A Validated Folinciocalteu Method for Total Phenolics Quantification of Condensed Tannin-rich Açaí (Euterpe Oleracea Mart.) Seeds Extract. Journal of Food Science and Technology, 58, 4693-4702.
  • 29. Abdallah, M., Shanableh, A., Adghim, M., Ghenai, C., Saad, S., 2018. Biogas Production from Different Types of Cow Manure. Advances in Science and Engineering Technology International Conferences (ASET).
  • 30. Thompson, L.R., Rowntree, J.E., 2020. Invited Review: Methane Sources, Quantification, and Mitigation in Grazing Beef Systems. Applied Animal Science, 36, 556-573.
  • 31. Font Palma, C., 2019. Methods for the Treatment of Cattle Manure A Review. C 5:27.
  • 32. Getabalew, M., Alemneh, T., Akeberegn, D., 2019. Methane Production in Ruminant Animals: Implication for Their Impact on Climate Change. Concepts of Dairy & Veterinary Sciences, 2, 204-210.
  • 33. Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., Gruber, L., 2007. Biogas Production From Maize and Dairy Cattle Manure-Influence of Biomass Composition on the Methane Yield. Agriculture, Ecosystems and Environment, 118.
  • 34. Rani, P., Bansal, M., Pathak, V.V., 2022. Experimental and Kinetic Studies for Improvement of Biogas Production from KOH Pretreated Wheat Straw. Current Research in Green and Sustainable Chemistry, 5, 100283.
  • 35. Wang, Y., Meyer, T.J., 2019. A Route to Renewable Energy Triggered by the Haberbosch Process. Chem, 5, 496-497.
  • 36. Chojnacka, K., Moustakas, K., Witek-Krowiak, A., 2020. Bio-Based Fertilizers: A Practical Approach Towards Circular Economy. Bioresource Technology, 295, 122223.
  • 37. Jurgutis, L., Šlepetienė, A., Amalevičiūtė- Volungė, K., Volungevičius, J., Šlepetys, J., 2021. The Effect of Digestate Fertilisation On Grass Biogas Yield And Soil Properties In Field-Biomass-Biogas-Field Renewable Energy Production Approach In Lithuania. Biomass and Bioenergy 153:106211.
  • 38. Xu, J., Mohamed, E., Li, Q., Lu, T., Yu, H., Jiang, W., 2021. Effect of Humic Acid Addition on Buffering Capacity and Nutrient Storage Capacity of Soilless Substrates. Frontiers in Plant Science 12.
  • 39. Govarthanan, M., Manikandan, S., Subbaiya, R., Krishnan, R.Y., Srinivasan, S., Karmegam, N., Kim, W., 2022. Emerging Trends and Nanotechnology Advances for Sustainable Biogas Production from Lignocellulosic Waste Biomass: A Critical Review. Fuel 312:122928.
  • 40. Stevenson, F.J., 1994. Humus Chemistry: Genesis, Composition, Reactions. John Wiley & Sons.
  • 41. Buffle, J., 1977. Les Substances Humiques et Leurs Interactions Avec Les Ions Mineraux. Conference Proceedings De La Commission dHydrologie Appliquée de A.G.H.T.M. lUniversite dOrsay:3-10.
  • 42. Lazo, De., Dyer, L.G., Alorro, R.D., 2017. Silicate, Phosphate and Carbonate Mineral Dissolution Behaviour in the Presence of Organic Acids: A Review. Minerals Engineering, 100, 115-123.
  • 43. Demetgül, C., Delikanlı, A., Sarıbıyık, O.Y., Karakaplan, M., Serin, S., 2012. Schiff Base Polymers Obtained by Oxidative Polycondensation and Their Co(II), Mn(II) and Ru(III) Complexes: Synthesis, Characterization and Catalytic Activity in Epoxidation of Styrene. Designed Monomers and Polymers, 15, 75-91.
  • 44. Melo, B.A.G., Motta, F.L., Santana, M.H.A., 2016. Humic Acids: Structural Properties and Multiple Functionalities for Novel Technological Developments. Materials Science and Engineering: C 62, 967-974.
  • 45. Drever, J.I., Stillings, L.L., 1997. The Role of Organic Acids in Mineral Weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 120, 167-181.
  • 46. Mirza, M.A., Agarwal, S.P., Rahman, M.A., Rauf, A., Ahmad, N., Alam, A., Iqbal, Z., 2011. Role of Humic Acid on Oral Drug Delivery of an Antiepileptic Drug. Drug Development and Industrial Pharmacy, 37, 310-319.
  • 47. Elisabetta, L.N.S., 2006. The Role of Humic Substances in the Fate of Anthropogenic Organic Pollutants in Soil with Emphasis on Endocrine Disruptor Compounds. Soil and Water Pollution Monitoring. Protection and Remediation, 69-92.
  • 48. Rostami, M., Shokouhian, A., Mohebodini, M., 2022. Effect of Humic Acid, Nitrogen Concentrations and Application Method on the Morphological, Yield and Biochemical Characteristics of Strawberry ‘Paros’. International Journal of Fruit Science, 22, 203-214.
  • 49. Braziene, Z., Paltanavicius, V., Avizienytė, D., 2021. The Influence of Fulvic Acid on Spring Cereals and Sugar Beets Seed Germination and Plant Productivity. Environ Res, 195, 110824.
  • 50. Akcin, A., 2021. The Effects of Fulvic Acid on Physiological and Anatomical Characteristics of Bread Wheat (Triticum aestivum L.) cv. Flamura 85 Exposed to Chromium Stress. Soil and Sediment Contamination: An International Journal, 30, 590-609.
  • 51. Liu, X., Yang, J., Tao, J., Yao, R., 2022. Integrated Application of Inorganic Fertilizer with Fulvic Acid for Improving Soil Nutrient Supply and Nutrient Use Efficiency of Winter Wheat in a Salt-Affected Soil. Applied Soil Ecology, 170, 104255.
  • 52. Xu, J., Mohamed, E., Li, Q., Lu, T., Yu, H., Jiang, W., 2021. Effect of Humic Acid Addition on Buffering Capacity and Nutrient Storage Capacity of Soilless Substrates. Frontiers in Plant Science, 12, 644229-644229.
  • 53. Hamy, A.R.A., Enas, Z., Hassan, A., El- Zehery, H.R.A., Salem, A.A., 2021. New Strains of Plant Growth-promoting Rhizobacteria in Combinations with Humic Acid to Enhance Squash Growth Under Saline Stress. Egyptian Journal of Science, 61, 129-146.
  • 54. Amer, A., Ghoneim, M., Shoala, T., Mohamed, H.I., 2021. Comparative Studies of Ecofriendly Compounds Like Humic Acid, Salicylic, and Glycyrrhizic Acids and Their Nanocomposites on French Basil (Ocimum Basilicum L. Cv. Grand Verde). Environ Sci Pollut Res Int, 28, 47196-47212.
  • 55. Deng, A.N., Luo, J.H., Su, C.L., Wu, X.F., Zhao, M., 2021. Reduced Inorganic Fertiliser in Combination with an Alkaline Humic Acid Fertiliser Amendment on Acid Growth Media Properties and Cherry Tomato Growth. New Zealand Journal of Crop and Horticultural Science, 49, 225-242.
  • 56. Chen, Q., Qu, Z., Ma, G., Wang, W., Dai, J., Zhang, M., Wei, Z., Liu, Z., 2022. Humic Acid Modulates Growth, Photosynthesis, Hormone and Osmolytes System of Maize Under Drought Conditions. Agricultural Water Management, 263, 107447.
  • 57. Khalili, S., Khandan-Mirkohi, A., 2021. Humic Acid Improves Morpho-physiological and Biochemical Traits of Phyla Nodiflora. Acta Physiologiae Plantarum, 43, 1-11.
  • 58. Morais, E.G., Silva, C.A., Maluf, H.J.G.M., 2021. Soaking of Seedlings Roots in Humic Acid as an Effective Practice to Improve Eucalyptus Nutrition and Growth. Communications in Soil Science and Plant Analysis, 52, 1399-1415.
  • 59. Li, Y., Fang, F., Wei, J., Cui, R., Li, G., Zheng, F., Tan, D., 2021. Physiological Effects of Humic Acid in Peanut Growing in Continuous Cropping Soil. Agronomy Journal, 113, 550-559

The Investigation of the Other Component During Biogas Production

Yıl 2022, Cilt: 37 Sayı: 2, 499 - 508, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146491

Öz

The rise of the energy consumption of developing countries increases the carbon dioxide emission through to the atmosphere that causes global warming. The releasing of the carbon dioxide into theatmosphere is needed to be under control and sustainable because of the natural disaster appearing depending on the global warming that affects human life negatively. Therefore, the investigation of alternative resources is an under obligation instead of fossil-based fuels. The biogas production is one of the methods in alternative fuel manufacturing such as biodiesel, wind power and etc. The mixture of gases %35-45 CO2, %55-65 CH4 are produced with trace amount of other gases CO, H2S, NH3 by using
suitable organic wastes after digestion. In this study, the amount of phenolic compound, nitrogen (N), phosphorus (P2O5), potassium (K2O), pH, Humic and Fulvic acid, conductivity properties were investigated in liquid phase before and after digestion. According to obtained results, there are any differences for the amount of N, P, K, while the value of the pH increases after digestion and the amount of the total carbon, Humic and Fulvic acid, the phenolic compounds and conductivity increases after digestion.

Kaynakça

  • 1. Environmental Protection Agency (EPA), 2021. Understanding Global Warming Potentials https://www.epa.gov/ Erişim Tarihi 02.03.2022.
  • 2. National Aeronautics and Space Administration (NASA) 2021. htpp://www.climate.nasa.gov/ Erişim Tarihi 02.03.2022
  • 3. Lindsey, R., 2021. Climate Change: Atmospheric Carbon Dioxide. In: Dlugokencky E (ed), https://www.climate.gov/ Erişim Tarihi 03.02.2022
  • 4. Masson-Delmotte, V., Zhai, P., Pirani, A. Connors, S.L., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, T.K.M., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B., 2021. Intergovernmental Panel on Climate Change (IPCC) The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
  • 5. Bonneuil, C., Choquet, P. L., Franta, B., 2021. Early Warnings and Emerging Accountability Total’s Responses To Global Warming, 1971– 2021. Global Environmental Change 71, 102386.
  • 6. Paris Antlaşması, Resmi Gazete 2021 https://www.resmigazete.gov.tr/ Erişim Tarihi 03.02.2022.
  • 7. Zhoua, B., Or, S.W., Chan, K.W., Duan, H., Wu, Q., Wang, H., Meng, Y., 2021. Short-Term Prediction of Wind Power and its Ramp Events Based on Semisupervised Generative Adversarial Network. Electrical Power and Energy Systems, 125:106411.
  • 8. Ren, S., Dou, B., Ning, F., 2021. Geothermal Energy Exploitation from Depleted Hightemperature Gas Reservoirs By Recycling CO2: The Superiority and Existing Problems. Geoscience Frontiers, 12:6, 101078.
  • 9. Zhang, Q.L.Y., Mieghem, A.V., Chen, Y.C., Yu, N., Yang, Y., Yin, H., 2020. Design and Experiment of a Sun-powered Smart Building Envelope with Automatic Control. Energy & Buildings 223, 110173.
  • 10. Qaiser, I., 2022. A Comparison of Renewable and Sustainable Energy Sector of the South Asian Countries: An Application of SWOT Methodology. Renewable Energy, 181, 417-425.
  • 11. Sarıbıyık, O.Y., Kılınç, R., 2021. The Investigation of the Alternative Fuel Biogas Potential for Model Town. Europen Journal of Science and Technology, 25, 192-197.
  • 12. Uçar, I.R., Özer, Z., Sarıbıyık, O.Y., 2021. The Investigation of the Waste Effect on Biogas Production. Çukurova University Journal of the Faculty of Engineering, 36, 581-589.
  • 13. Association, S.G., 2021. Basic Data on Biogas. Swedish Gas Technology Centre: Basic Data on Biogas. https://www.energigas.se/ Erişim Tarihi 03.02.2022.
  • 14. Boreka, K., Romaniuk, W., 2020. Biogas Installation for Harvesting Energy and Unitlization of Natural Fertilisers. Sciendo Agricultural Engineering, 24:1-14.
  • 15. Diamantis, V., Eftaxias, A., Stamatelatou, K., Noutsopoulos, C., Vlachokostas, C., Aivasidis, A., 2021. Bioenergy in the Era of Circular Economy: Anaerobic Digestion Technological Solutions to Produce Biogas from Lipid-rich Wastes. Renewable Energy, 168, 438-447.
  • 16. Winquist, E., Rikkonen, P., Pyysiainen, J., Varho, V., 2019. Is Biogas an Energy or a Sustainability Product?-Business Opportunities in the Finnish Biogas Branch. Journal of Cleaner Production, 233, 1344-1354.
  • 17. Bernard, S.S., Srinivasan, T., Suresh, G., Paul, A.I., Fowzan, K.M., Kishore, V.A., 2020. Production of Biogas from Anaerobic Digestion of Vegetable Waste and Cow Dung. Materials Today: Proceedings, 33.
  • 18. Sindhu, R., Binod, P., Pandey, A., Ankaram, S., Duan, Y., Awasthi, M.K., 2019. Chapter 5- Biofuel Production from Biomass: Toward Sustainable Development. Current Developments in Biotechnology and Bioengineering, Elsevier, 79-92.
  • 19. Özcanli, M., Serin, H., Sarıbıyık, O.Y., Aydin, K., Serin, S., 2012. Performance and Emission Studies of Castor Bean (Ricinus Communis) Oil Biodiesel and its Blends with Diesel Fuel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 34, 1808-1814.
  • 20. Sarıbıyık, O.Y., Özcanlı, M., Serin, H., Serin, S., Aydın, K., 2010. Biodiesel Production from Ricinus Communis Oil and its Blends with Soybean Biodiesel. Strojniški Vestnik-Journal of Mechanical Engineering, 56, 811-816.
  • 21. Quiroz, M., Varnero, M.T., Cuevas, J.G., Sierra, H., 2021. Cactus Pear (Opuntia Ficus- Indica) in Areas with Limited Rainfall for the Production of Biogas and Biofertilizer. Journal of Cleaner Production, 289, 125839.
  • 22. Nergiz, U., Sert, B., Cemalettin, A., Sarıbıyık, O.Y., 2021. The Effect of the Light and Feeding on Growth of Algea in Bioreactor. European Journal of Science and Technology, 23, 475-480.
  • 23. Azadbakht, M., Ardebili, S.M.S., Rahmani, M., 2021. Potential for the Production of Biofuels from Agricultural Waste, Livestock, and Slaughterhouse Waste in Golestan Province, Iran. Biomass Conversion and Biorefinery.
  • 24. Bassey, A., James, E., Bassey, A., Em, A., 2013. Four Potentials of Biogas Yield from Cow Dung-CD. European Journal of Experimental Biology 3.
  • 25. Ma, Y., Yin, Y., Liu, Y., 2017. New Insights Into Co-digestion of Activated Sludge and Food Waste: Biogas Versus Biofertilizer. Bioresource Technology, 241, 448–453.
  • 26. Uyar, B.B., Karadağ., M.G., Sanlier, N., Günyel, S., 2013. Toplumumuzda Sıklıkla Kullanılan Bazı Bitkilerin Toplam Fenolik Madde Miktarlarının Saptanması. Gıda, 38, 23-29.
  • 27. Patthamakanokporn, O., Puwastien, P., Nitithamyong, A., Sirichakwal, P.P., 2008. Changes of Antioxidant Activity and Total Phenolic Compounds During Storage of Selected Fruits. Journal of Food Composition and Analysis, 21, 241-248.
  • 28. Martins, G.R., Monteiro, A.F., Amaral, F.R.L., da Silva, A.S.A., 2021. A Validated Folinciocalteu Method for Total Phenolics Quantification of Condensed Tannin-rich Açaí (Euterpe Oleracea Mart.) Seeds Extract. Journal of Food Science and Technology, 58, 4693-4702.
  • 29. Abdallah, M., Shanableh, A., Adghim, M., Ghenai, C., Saad, S., 2018. Biogas Production from Different Types of Cow Manure. Advances in Science and Engineering Technology International Conferences (ASET).
  • 30. Thompson, L.R., Rowntree, J.E., 2020. Invited Review: Methane Sources, Quantification, and Mitigation in Grazing Beef Systems. Applied Animal Science, 36, 556-573.
  • 31. Font Palma, C., 2019. Methods for the Treatment of Cattle Manure A Review. C 5:27.
  • 32. Getabalew, M., Alemneh, T., Akeberegn, D., 2019. Methane Production in Ruminant Animals: Implication for Their Impact on Climate Change. Concepts of Dairy & Veterinary Sciences, 2, 204-210.
  • 33. Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., Gruber, L., 2007. Biogas Production From Maize and Dairy Cattle Manure-Influence of Biomass Composition on the Methane Yield. Agriculture, Ecosystems and Environment, 118.
  • 34. Rani, P., Bansal, M., Pathak, V.V., 2022. Experimental and Kinetic Studies for Improvement of Biogas Production from KOH Pretreated Wheat Straw. Current Research in Green and Sustainable Chemistry, 5, 100283.
  • 35. Wang, Y., Meyer, T.J., 2019. A Route to Renewable Energy Triggered by the Haberbosch Process. Chem, 5, 496-497.
  • 36. Chojnacka, K., Moustakas, K., Witek-Krowiak, A., 2020. Bio-Based Fertilizers: A Practical Approach Towards Circular Economy. Bioresource Technology, 295, 122223.
  • 37. Jurgutis, L., Šlepetienė, A., Amalevičiūtė- Volungė, K., Volungevičius, J., Šlepetys, J., 2021. The Effect of Digestate Fertilisation On Grass Biogas Yield And Soil Properties In Field-Biomass-Biogas-Field Renewable Energy Production Approach In Lithuania. Biomass and Bioenergy 153:106211.
  • 38. Xu, J., Mohamed, E., Li, Q., Lu, T., Yu, H., Jiang, W., 2021. Effect of Humic Acid Addition on Buffering Capacity and Nutrient Storage Capacity of Soilless Substrates. Frontiers in Plant Science 12.
  • 39. Govarthanan, M., Manikandan, S., Subbaiya, R., Krishnan, R.Y., Srinivasan, S., Karmegam, N., Kim, W., 2022. Emerging Trends and Nanotechnology Advances for Sustainable Biogas Production from Lignocellulosic Waste Biomass: A Critical Review. Fuel 312:122928.
  • 40. Stevenson, F.J., 1994. Humus Chemistry: Genesis, Composition, Reactions. John Wiley & Sons.
  • 41. Buffle, J., 1977. Les Substances Humiques et Leurs Interactions Avec Les Ions Mineraux. Conference Proceedings De La Commission dHydrologie Appliquée de A.G.H.T.M. lUniversite dOrsay:3-10.
  • 42. Lazo, De., Dyer, L.G., Alorro, R.D., 2017. Silicate, Phosphate and Carbonate Mineral Dissolution Behaviour in the Presence of Organic Acids: A Review. Minerals Engineering, 100, 115-123.
  • 43. Demetgül, C., Delikanlı, A., Sarıbıyık, O.Y., Karakaplan, M., Serin, S., 2012. Schiff Base Polymers Obtained by Oxidative Polycondensation and Their Co(II), Mn(II) and Ru(III) Complexes: Synthesis, Characterization and Catalytic Activity in Epoxidation of Styrene. Designed Monomers and Polymers, 15, 75-91.
  • 44. Melo, B.A.G., Motta, F.L., Santana, M.H.A., 2016. Humic Acids: Structural Properties and Multiple Functionalities for Novel Technological Developments. Materials Science and Engineering: C 62, 967-974.
  • 45. Drever, J.I., Stillings, L.L., 1997. The Role of Organic Acids in Mineral Weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 120, 167-181.
  • 46. Mirza, M.A., Agarwal, S.P., Rahman, M.A., Rauf, A., Ahmad, N., Alam, A., Iqbal, Z., 2011. Role of Humic Acid on Oral Drug Delivery of an Antiepileptic Drug. Drug Development and Industrial Pharmacy, 37, 310-319.
  • 47. Elisabetta, L.N.S., 2006. The Role of Humic Substances in the Fate of Anthropogenic Organic Pollutants in Soil with Emphasis on Endocrine Disruptor Compounds. Soil and Water Pollution Monitoring. Protection and Remediation, 69-92.
  • 48. Rostami, M., Shokouhian, A., Mohebodini, M., 2022. Effect of Humic Acid, Nitrogen Concentrations and Application Method on the Morphological, Yield and Biochemical Characteristics of Strawberry ‘Paros’. International Journal of Fruit Science, 22, 203-214.
  • 49. Braziene, Z., Paltanavicius, V., Avizienytė, D., 2021. The Influence of Fulvic Acid on Spring Cereals and Sugar Beets Seed Germination and Plant Productivity. Environ Res, 195, 110824.
  • 50. Akcin, A., 2021. The Effects of Fulvic Acid on Physiological and Anatomical Characteristics of Bread Wheat (Triticum aestivum L.) cv. Flamura 85 Exposed to Chromium Stress. Soil and Sediment Contamination: An International Journal, 30, 590-609.
  • 51. Liu, X., Yang, J., Tao, J., Yao, R., 2022. Integrated Application of Inorganic Fertilizer with Fulvic Acid for Improving Soil Nutrient Supply and Nutrient Use Efficiency of Winter Wheat in a Salt-Affected Soil. Applied Soil Ecology, 170, 104255.
  • 52. Xu, J., Mohamed, E., Li, Q., Lu, T., Yu, H., Jiang, W., 2021. Effect of Humic Acid Addition on Buffering Capacity and Nutrient Storage Capacity of Soilless Substrates. Frontiers in Plant Science, 12, 644229-644229.
  • 53. Hamy, A.R.A., Enas, Z., Hassan, A., El- Zehery, H.R.A., Salem, A.A., 2021. New Strains of Plant Growth-promoting Rhizobacteria in Combinations with Humic Acid to Enhance Squash Growth Under Saline Stress. Egyptian Journal of Science, 61, 129-146.
  • 54. Amer, A., Ghoneim, M., Shoala, T., Mohamed, H.I., 2021. Comparative Studies of Ecofriendly Compounds Like Humic Acid, Salicylic, and Glycyrrhizic Acids and Their Nanocomposites on French Basil (Ocimum Basilicum L. Cv. Grand Verde). Environ Sci Pollut Res Int, 28, 47196-47212.
  • 55. Deng, A.N., Luo, J.H., Su, C.L., Wu, X.F., Zhao, M., 2021. Reduced Inorganic Fertiliser in Combination with an Alkaline Humic Acid Fertiliser Amendment on Acid Growth Media Properties and Cherry Tomato Growth. New Zealand Journal of Crop and Horticultural Science, 49, 225-242.
  • 56. Chen, Q., Qu, Z., Ma, G., Wang, W., Dai, J., Zhang, M., Wei, Z., Liu, Z., 2022. Humic Acid Modulates Growth, Photosynthesis, Hormone and Osmolytes System of Maize Under Drought Conditions. Agricultural Water Management, 263, 107447.
  • 57. Khalili, S., Khandan-Mirkohi, A., 2021. Humic Acid Improves Morpho-physiological and Biochemical Traits of Phyla Nodiflora. Acta Physiologiae Plantarum, 43, 1-11.
  • 58. Morais, E.G., Silva, C.A., Maluf, H.J.G.M., 2021. Soaking of Seedlings Roots in Humic Acid as an Effective Practice to Improve Eucalyptus Nutrition and Growth. Communications in Soil Science and Plant Analysis, 52, 1399-1415.
  • 59. Li, Y., Fang, F., Wei, J., Cui, R., Li, G., Zheng, F., Tan, D., 2021. Physiological Effects of Humic Acid in Peanut Growing in Continuous Cropping Soil. Agronomy Journal, 113, 550-559
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Oğuz Yunus Sarıbıyık 0000-0001-9735-8735

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 2

Kaynak Göster

APA Sarıbıyık, O. Y. (2022). Biyogazla Birlikte Oluşan Diğer Ürünlerin Araştırılması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 499-508. https://doi.org/10.21605/cukurovaumfd.1146491