Araştırma Makalesi
BibTex RIS Kaynak Göster

Aluminum Forming by Vaporizing Foil Actuator Welding

Yıl 2023, Cilt: 38 Sayı: 4, 993 - 1003, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410340

Öz

Aluminum, has a wide range of uses, from industry to medical industrial products such as automotive, defense-aviation, and space. Aluminium has become a preferred material in applications where weight needs to be reduced. It is also used as a material in metal cladding and shaping applications. However, the high thermal conductivity coefficient of aluminum may cause some difficulties in the production process. These difficulties due to thermal conductivity may not allow to manufacture of desired products. In this study formability of aluminum with vaporizing foil actuator welding (VFAW) has been investigated as an alternative process to the traditional and solid state welding processes. By using different voltage values and separation distance parameters, the effects of these parameters on the formability of aluminum and copper sheet metal pairs with VFAW were examined experimentally. Experimental data show that voltage value is an important parameter in the VFAW process where a DC capacitor is used. In the VFAW process, where a 375 V voltage value is used, it has been determined that welding occurs in processes performed with three different separation distances (0.4 mm- 0.9 mm -1.5 mm). It was determined that 0.4 mm and 0.9 mm separation distances were effective in joining Al/Cu metal sheets with 0.1 mm thickness.

Kaynakça

  • 1. Joost, W.J., 2012. Reducing Vehicle Weight and Improving US Energy Efficiency Using Integrated Computational Materials Engineering. The Journal of the Minerals, Metals & Materials Society,1032-1038.
  • 2. Turkish Composites Manufacturers Association, Overview of the Transport Industry, 2020. www.kompozit.org.tr, Access date: 12.07.2023.
  • 3. Ahmed, R.M., Stater, M., 2022. Automobile Technology and Tradeoffs How Does Automobile Footprint Affect Its Fuel Economy?. SSRN 4202197.
  • 4. Liu, B., Vivek, A., Daehn, G.S., 2017. Joining Sheet Aluminum AA6061-T4 to Cast Magnesium AM60B by Vaporizing Foil Actuator Welding: Input Energy, Interface, and Strength. Journal of Manufacturing Processes, 30, 75-82.
  • 5. Zhang, W., Xu, J., 2022. Advanced Lightweight Materials for Automobiles: A review. Materials & Design, 110994.
  • 6. Çelik, G., Kaftanoğlu, B., Karadoğan, C., Alkaş, C.O., 2001. AA2024 Alüminyum Alaşımı için Şekillendirilebilme Sınır Diyagramlarını Etkileyen Parametrelerin İncelenmesi. Makina Tasarım ve İmalat Dergisi. 2001; 12(1): 28-33.
  • 7. Gronostajski, Z., Pater, Z., Madej, L., Gontarz, A., Lisiecki, L., Łukaszek-Sołek, A., Łuksza, J., Mróz, S., Muskalski, Z. Muzykiewicz, W., Pietrzyk, M., Śliwa,R.E., Tomczak, J., Wiewiórowska, S., Winiarski, G., Zasadziński, J., Ziółkiewicz, S., 2019. Recent Development Trends in Metal Forming. Archives of Civil and Mechanical Engineering, 19(3), 898-941.
  • 8. Şen, M., Altan, M., 2017. A Novel Application in Sheet Metal Forming: Shaping Metals by Plastic Injection Molding based on Fluid Pressure Forming, Çukurova University Journal of the Faculty of Engineering and Architecture, 32(4), 241-252.
  • 9. Mallick, P.K. (Ed.), 2020. Materials, Design and Manufacturing for Lightweight Vehicles. Woodhead Publishing, 2nd Edition, İndia, ‎504.
  • 10. Armao, F.G., 2002. Design & Fabrication of Aluminum Automobiles. Welding Innovation, 19(2), 2-6.
  • 11. Uludağ, A., 2007. Basınçlı Döküm Yönteminde Kalıp Sistem Tasarımı ve Simülasyon Analizi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, 91.
  • 12. Vivek, A., Hansen, S.R., Liu, B.C., Daehn, G.S., 2013. Vaporizing Foil Actuator: A Tool for Collision Welding. Journal of Materials Processing Technology, 213(12), 2304-2311.
  • 13. Hahn, M., Weddeling, C., Taber, G., Vivek, A., Daehn, G.S., Tekkaya, A.E., 2016. Vaporizing Foil Actuator Welding as a Competing Technology to Magnetic Pulse Welding. Journal of Materials Processing Technology, 230, 8-20.
  • 14. Wang, H., Wang, Y., 2019. High-Velocity Impact Welding Process: A Review. Metals, 9(2), 144.
  • 15. Nairne, E., 1774. VII. Electrical Experiments by Mr. Edward Nairne, of London, Mathematical Instrument-Maker, Made with a Machine of His Own Workmanship, a Description of Which is Prefixed. Philosophical Transactions of the Royal Society of London, (64), 79-89.
  • 16. Anderson, J.A., Smith, S., 1926. General Characteristics of Electrically Exploded Wires. Astrophysical Journal, 64, 295.
  • 17. Önder, G.T., Külekci, M.K., 2023. Vaporizing Foil Actuator Welding Prototype Manufacturing and Applications Risk Analysis, NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 12(4), 1079-1091.
  • 18. Vivek, A., Daehn, G.S., 2014. Vaporizing Foil Actuator: A Versatile Tool for High Energy-Rate Metal Working. Procedia Engineering, 81, 2129-2134.
  • 19. Biradar, A., Rijesh, M., 2022. Joining by Forming of Sheet Metals. Engineering Principles: Welding and Residual Stresses, 227.
  • 20. Benzing, J.T., He, M., Vivek, A., Taber, G.A., Mills, M.J., Daehn, G.S., 2017. A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals. Journal of Materials Engineering and Performance, 26, 1229-1235.
  • 21. Hansen, S.T., 2018, Vaporizing Foil Actuator Process Parameters: Input Characteristics, Energy Deposition, and Pressure Output, Dissertation, Graduate Program in Materials Science and Engineering, The Ohio State University, 145.
  • 22. Zhou, Y., Li, C., Wang, X., Liao, Z., Shi, X., Yao, C., 2021. Investigation of Flyer Plate Dynamic Behavior in Electromagnetic Pulse Welding. Journal of Manufacturing Processes, 68, 189-197.
  • 23. Hansen, S.R., Vivek, A., Daehn, G.S., 2015. Impact Welding of Aluminum Alloys 6061 and 5052 by Vaporizing Foil Actuators: Heat-Affected Zone Size and Peel Strength. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 137, 1-6.
  • 24. Vivek, A., Liu, B.C., Hansen, S.R., Daehn, G.S., 2014. Accessing Collision Welding Process Window for Titanium/Copper Welds with Vaporizing Voil Actuators and Grooved Targets. Journal of Materials Processing Technology, 214(8), 1583-1589.
  • 25. Chen, S., Huo, X., Guo, C., Wei, X., Huang, J., Yang, J., Lin, S., 2019. Interfacial Characteristics of Ti/Al Joint by Vaporizing Foil Actuator Welding. Journal of Materials Processing Technology, 263, 73-81.
  • 26. Nirudhoddi, B.S., Prasad, K.S., Vivek, A., Daehn, G.S., 2021. High Strength Welds in Titanium & Nickel Based Alloys by Impact Welding-A Practical Method. Journal of Advanced Joining Processes, 3, 100056.
  • 27. Du, F., Deng, L., Wang, X., Zhang, M., Jin, J., Zhang, J., 2022. Study on Interfacial Characteristics and Properties of NiTi/Al-Mg Joint by Vaporizing Foil Actuator Welding. Journal of Materials Research and Technology, 20, 3429-3440.
  • 28. Meng, Z., Gong, M., Guo, W., Liu, W., Huang, S., Hua, L., 2020. Numerical Simulation of the Joining Interface of Dissimilar Metals in Vaporizing Foil Actuator Welding: Forming Mechanism and Factors. Journal of Manufacturing Processes, 60(Nov), 654-665.
  • 29. Wang, K., Shang, S.L., Wang, Y., Vivek, A., Daehn, G., Liu, Z.K., Li, J., 2020. Unveiling Non-Equilibrium Metallurgical Phases in Dissimilar Al-Cu Joints Processed by Vaporizing Foil Actuator Welding. Materials and Design, 86, 108-306.
  • 30. Chen, S., Daehn, G.S., Vivek, A., Liu, B., Hansen, S.R., Huang, J., Lin, S., 2016. Interfacial Microstructures and Mechanical Property of Vaporizing Foil Actuator Welding of Aluminum Alloy to Steel. Materials Science and Engineering A, 659, 12-21.
  • 31. Li, J., Panton, B., Mao, Y., Vivek, A., Daehn, G., 2020. High Strength Impact Welding of NiTi and Stainless Steel Wires. Smart Materials and Structures, 29(10), 105023.
  • 32. Inal, O.T., Szecket, A., Vigueras, D.J., Pak, H. R., 1985. Explosive Welding of Ti-6Al-4V to Mild‐Steel Substrates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 3(6), 2605-2609.
  • 33. Liu, B., Vivek, A., Presley, M., Daehn, G.S., 2018. Dissimilar Impact Welding of 6111-T4, 5052-H32 Aluminum Alloys to 22MnB5, DP980 Steels and the Structure-Property Relationship of a Strongly Bonded Interface. Metallurgical and Materials Transactions A, 49, 899-907.
  • 34. Bahrani, A.S., Black, T.J., Crossland, B., 1967. The Mechanics of Wave Formation in Explosive welding. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 296(1445), 123-136.
  • 35. Athar, M.H., Tolaminejad, B., 2015. Weldability Window and the Effect of Interface Morphology on the Properties of Al/Cu/Al Laminated Composites Fabricated by Explosive Welding. Materials & Design, 86, 516-525.
  • 36. Wittman, R.H., 1973. The Influence of Collision Parameters of the Strength and Microstructure of an Explosion Welded Aluminium Alloy. In Proceedings of the Proc. 2nd Int. Sym. on Use of an Explosive Energy in Manufacturing Metallic Materials, Marianske Lazne, Czech Republic, 9-12 October 1973, 153-168.
  • 37. Tümer, M., Kerimak, M.Z., 2017. The Effects of Different Filler Metals on the Toughness and Microstructure Properties of Dissimilar Welding of Nickel Base Super Alloy, Inconel 625 and Stainless Steel, AISI 304L. El-Cezerî Journal of Science and Engineering, 4(1), 116-126.

Buharlaştırılmış Folyo Aktüatör Kaynağı ile Alüminyum Şekillendirme

Yıl 2023, Cilt: 38 Sayı: 4, 993 - 1003, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410340

Öz

Endüstrinin vazgeçilmez malzemelerinden olan alüminyum, otomotiv, savunma-havacılık ve uzay endüstrisinden medikal endüstriyel ürünlere kadar çok geniş bir kullanım alanına sahiptir. Özellikle parça ağırlığının azaltılması gereken uygulamalarda ihtiyaç duyulan bir malzeme konumuna gelmiştir. Ayrıca metal giydirme, şekillendirme uygulamalarında yapısal bileşen olarak da kullanılmaktadır. Ancak alüminyumun yüksek ısı iletim katsayısı, üretim sürecinde bazı zorluklara neden olabilmektedir. Geleneksel imalat teknikleri, özellikle bu termal sorun nedeniyle sağlıklı ürün elde etmekte zorluklar yaşanmasına sebep olmaktadır. Bu çalışmada, hem geleneksel hem de katı hal kaynak yöntemlerine alternatif olarak folyo buharlaştırma tekniği (VFAW) ile alüminyumun şekillendirilebilirliği incelenmiştir. Farklı gerilim değerleri ve durdurma mesafesi parametreleri kullanılarak, bu parametrelerin alüminyum ve bakır sac metal çiftinin VFAW ile şekillendirilebilirliği üzerine etkileri deneysel olarak incelenmiştir. Deneysel veriler DC kapasitörlerin kullanıldığı kaynak yönteminde, gerilim değerinin önemli bir parametre olduğunu göstermektedir. 375 V gerilim değerinin kullanıldığı VFAW prosesinde üç farklı ayırma mesafesi ile gerçekleştirilen işlemlerde (0.4 – 0.9 – 1.5 mm) kaynak oluşumunun gerçekleştiği tespit edilmiştir. 0.1 mm kalınlığa sahip Al/Cu sac metal levhaların birleştirilmesinde 0.4 mm ve 0.9 mm ayrılma mesafesinin etkili olduğu belirlenmiştir.

Kaynakça

  • 1. Joost, W.J., 2012. Reducing Vehicle Weight and Improving US Energy Efficiency Using Integrated Computational Materials Engineering. The Journal of the Minerals, Metals & Materials Society,1032-1038.
  • 2. Turkish Composites Manufacturers Association, Overview of the Transport Industry, 2020. www.kompozit.org.tr, Access date: 12.07.2023.
  • 3. Ahmed, R.M., Stater, M., 2022. Automobile Technology and Tradeoffs How Does Automobile Footprint Affect Its Fuel Economy?. SSRN 4202197.
  • 4. Liu, B., Vivek, A., Daehn, G.S., 2017. Joining Sheet Aluminum AA6061-T4 to Cast Magnesium AM60B by Vaporizing Foil Actuator Welding: Input Energy, Interface, and Strength. Journal of Manufacturing Processes, 30, 75-82.
  • 5. Zhang, W., Xu, J., 2022. Advanced Lightweight Materials for Automobiles: A review. Materials & Design, 110994.
  • 6. Çelik, G., Kaftanoğlu, B., Karadoğan, C., Alkaş, C.O., 2001. AA2024 Alüminyum Alaşımı için Şekillendirilebilme Sınır Diyagramlarını Etkileyen Parametrelerin İncelenmesi. Makina Tasarım ve İmalat Dergisi. 2001; 12(1): 28-33.
  • 7. Gronostajski, Z., Pater, Z., Madej, L., Gontarz, A., Lisiecki, L., Łukaszek-Sołek, A., Łuksza, J., Mróz, S., Muskalski, Z. Muzykiewicz, W., Pietrzyk, M., Śliwa,R.E., Tomczak, J., Wiewiórowska, S., Winiarski, G., Zasadziński, J., Ziółkiewicz, S., 2019. Recent Development Trends in Metal Forming. Archives of Civil and Mechanical Engineering, 19(3), 898-941.
  • 8. Şen, M., Altan, M., 2017. A Novel Application in Sheet Metal Forming: Shaping Metals by Plastic Injection Molding based on Fluid Pressure Forming, Çukurova University Journal of the Faculty of Engineering and Architecture, 32(4), 241-252.
  • 9. Mallick, P.K. (Ed.), 2020. Materials, Design and Manufacturing for Lightweight Vehicles. Woodhead Publishing, 2nd Edition, İndia, ‎504.
  • 10. Armao, F.G., 2002. Design & Fabrication of Aluminum Automobiles. Welding Innovation, 19(2), 2-6.
  • 11. Uludağ, A., 2007. Basınçlı Döküm Yönteminde Kalıp Sistem Tasarımı ve Simülasyon Analizi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, 91.
  • 12. Vivek, A., Hansen, S.R., Liu, B.C., Daehn, G.S., 2013. Vaporizing Foil Actuator: A Tool for Collision Welding. Journal of Materials Processing Technology, 213(12), 2304-2311.
  • 13. Hahn, M., Weddeling, C., Taber, G., Vivek, A., Daehn, G.S., Tekkaya, A.E., 2016. Vaporizing Foil Actuator Welding as a Competing Technology to Magnetic Pulse Welding. Journal of Materials Processing Technology, 230, 8-20.
  • 14. Wang, H., Wang, Y., 2019. High-Velocity Impact Welding Process: A Review. Metals, 9(2), 144.
  • 15. Nairne, E., 1774. VII. Electrical Experiments by Mr. Edward Nairne, of London, Mathematical Instrument-Maker, Made with a Machine of His Own Workmanship, a Description of Which is Prefixed. Philosophical Transactions of the Royal Society of London, (64), 79-89.
  • 16. Anderson, J.A., Smith, S., 1926. General Characteristics of Electrically Exploded Wires. Astrophysical Journal, 64, 295.
  • 17. Önder, G.T., Külekci, M.K., 2023. Vaporizing Foil Actuator Welding Prototype Manufacturing and Applications Risk Analysis, NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 12(4), 1079-1091.
  • 18. Vivek, A., Daehn, G.S., 2014. Vaporizing Foil Actuator: A Versatile Tool for High Energy-Rate Metal Working. Procedia Engineering, 81, 2129-2134.
  • 19. Biradar, A., Rijesh, M., 2022. Joining by Forming of Sheet Metals. Engineering Principles: Welding and Residual Stresses, 227.
  • 20. Benzing, J.T., He, M., Vivek, A., Taber, G.A., Mills, M.J., Daehn, G.S., 2017. A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals. Journal of Materials Engineering and Performance, 26, 1229-1235.
  • 21. Hansen, S.T., 2018, Vaporizing Foil Actuator Process Parameters: Input Characteristics, Energy Deposition, and Pressure Output, Dissertation, Graduate Program in Materials Science and Engineering, The Ohio State University, 145.
  • 22. Zhou, Y., Li, C., Wang, X., Liao, Z., Shi, X., Yao, C., 2021. Investigation of Flyer Plate Dynamic Behavior in Electromagnetic Pulse Welding. Journal of Manufacturing Processes, 68, 189-197.
  • 23. Hansen, S.R., Vivek, A., Daehn, G.S., 2015. Impact Welding of Aluminum Alloys 6061 and 5052 by Vaporizing Foil Actuators: Heat-Affected Zone Size and Peel Strength. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 137, 1-6.
  • 24. Vivek, A., Liu, B.C., Hansen, S.R., Daehn, G.S., 2014. Accessing Collision Welding Process Window for Titanium/Copper Welds with Vaporizing Voil Actuators and Grooved Targets. Journal of Materials Processing Technology, 214(8), 1583-1589.
  • 25. Chen, S., Huo, X., Guo, C., Wei, X., Huang, J., Yang, J., Lin, S., 2019. Interfacial Characteristics of Ti/Al Joint by Vaporizing Foil Actuator Welding. Journal of Materials Processing Technology, 263, 73-81.
  • 26. Nirudhoddi, B.S., Prasad, K.S., Vivek, A., Daehn, G.S., 2021. High Strength Welds in Titanium & Nickel Based Alloys by Impact Welding-A Practical Method. Journal of Advanced Joining Processes, 3, 100056.
  • 27. Du, F., Deng, L., Wang, X., Zhang, M., Jin, J., Zhang, J., 2022. Study on Interfacial Characteristics and Properties of NiTi/Al-Mg Joint by Vaporizing Foil Actuator Welding. Journal of Materials Research and Technology, 20, 3429-3440.
  • 28. Meng, Z., Gong, M., Guo, W., Liu, W., Huang, S., Hua, L., 2020. Numerical Simulation of the Joining Interface of Dissimilar Metals in Vaporizing Foil Actuator Welding: Forming Mechanism and Factors. Journal of Manufacturing Processes, 60(Nov), 654-665.
  • 29. Wang, K., Shang, S.L., Wang, Y., Vivek, A., Daehn, G., Liu, Z.K., Li, J., 2020. Unveiling Non-Equilibrium Metallurgical Phases in Dissimilar Al-Cu Joints Processed by Vaporizing Foil Actuator Welding. Materials and Design, 86, 108-306.
  • 30. Chen, S., Daehn, G.S., Vivek, A., Liu, B., Hansen, S.R., Huang, J., Lin, S., 2016. Interfacial Microstructures and Mechanical Property of Vaporizing Foil Actuator Welding of Aluminum Alloy to Steel. Materials Science and Engineering A, 659, 12-21.
  • 31. Li, J., Panton, B., Mao, Y., Vivek, A., Daehn, G., 2020. High Strength Impact Welding of NiTi and Stainless Steel Wires. Smart Materials and Structures, 29(10), 105023.
  • 32. Inal, O.T., Szecket, A., Vigueras, D.J., Pak, H. R., 1985. Explosive Welding of Ti-6Al-4V to Mild‐Steel Substrates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 3(6), 2605-2609.
  • 33. Liu, B., Vivek, A., Presley, M., Daehn, G.S., 2018. Dissimilar Impact Welding of 6111-T4, 5052-H32 Aluminum Alloys to 22MnB5, DP980 Steels and the Structure-Property Relationship of a Strongly Bonded Interface. Metallurgical and Materials Transactions A, 49, 899-907.
  • 34. Bahrani, A.S., Black, T.J., Crossland, B., 1967. The Mechanics of Wave Formation in Explosive welding. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 296(1445), 123-136.
  • 35. Athar, M.H., Tolaminejad, B., 2015. Weldability Window and the Effect of Interface Morphology on the Properties of Al/Cu/Al Laminated Composites Fabricated by Explosive Welding. Materials & Design, 86, 516-525.
  • 36. Wittman, R.H., 1973. The Influence of Collision Parameters of the Strength and Microstructure of an Explosion Welded Aluminium Alloy. In Proceedings of the Proc. 2nd Int. Sym. on Use of an Explosive Energy in Manufacturing Metallic Materials, Marianske Lazne, Czech Republic, 9-12 October 1973, 153-168.
  • 37. Tümer, M., Kerimak, M.Z., 2017. The Effects of Different Filler Metals on the Toughness and Microstructure Properties of Dissimilar Welding of Nickel Base Super Alloy, Inconel 625 and Stainless Steel, AISI 304L. El-Cezerî Journal of Science and Engineering, 4(1), 116-126.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer), Malzeme Bilimi ve Teknolojileri, Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Ganime Tuğba Önder 0000-0002-7504-7394

Mustafa Kemal Külekci 0000-0002-5829-3489

Yayımlanma Tarihi 28 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 38 Sayı: 4

Kaynak Göster

APA Önder, G. T., & Külekci, M. K. (2023). Aluminum Forming by Vaporizing Foil Actuator Welding. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(4), 993-1003. https://doi.org/10.21605/cukurovaumfd.1410340