Araştırma Makalesi
BibTex RIS Kaynak Göster

Enhancement of Electrocatalytic Hydrogen Evolution Activity of Carbon Felt in Alkaline Media

Yıl 2019, Cilt: 34 Sayı: 1, 43 - 50, 31.03.2019
https://doi.org/10.21605/cukurovaummfd.601230

Öz

In this study, copper, cobalt, cobalt-copper and cobalt/platinum were electrochemically deposited over a carbon-felt electrode. The electrocatalytic activity of the prepared electrodes for the hydrogen gas evolution was studied in 1 M KOH solution using cathodic current-potential curves, electrochemical impedance spectroscopy (EIS) and electrolysis techniques. The long-term stability of the prepared electrodes was investigated at 2.2x10-3 A m-2 in 1 M KOH solution. It was found that, the electrodeposition of the copper, cobalt, cobalt-copper and cobalt/platinum over the carbon-felt increases hydrogen gas evolution by decreasing discharge potential. The electrocatalytic activity of the electrode depends on the kind of metal. The electrocatalytic activity of deposited electrodes can explain by high surface area of the carbon felt and high catalytic activity of the cobalt and platinum.

Kaynakça

  • 1. Wu, J.K., 1992. Electrochemical Method for Studying Hydrogen in Iron, Nickel and Palladium, International Journal of Hydrogen Energy, 17, 917-921.
  • 2. Petrii, O.A., Tsirlia, G.A., 1994. Electrocatalytic Activity Prediction for Hydrogen Electrode Reaction: Intuition, Art, Science, Electrochimica Acta, 39, 1739-1747.
  • 3. Hu, W., Cao, X., Wang, F., Zhag, Y., 1997. A Novel Cathode for Alkaline Water Electrolysis, International Journal of Hydrogen Energy, 22, 621-623.
  • 4. Kawashima, A., Akiyama, E., Habazaki, H., Hashimoto, K., 1997. Characterization of Sputter-deposited Ni-Mo and Ni-W Alloy Electrocatalysts for Hydrogen Evolution in Alkaline Solution, Material Science and Engineering, A226-228, 905-909.
  • 5. Ananth, M.V., Parthasaradhy, N.V., 1997. Hydrogen Evolution Characteristics of Electrodeposited Ni-Zn-Fe Coatings in Alkaline Solutions, International Journal of Hydrogen Energy, 22, 747-751.
  • 6. Yi, S., Ting-Ting, Z., Yue, Z., Wei-Xuan, X., Dong-Rui, Y., Feng-Bin, W., Xing-Hua, X., 2018. Atomic Level Tailoring of the Electrocatalytic Activity of Au-Pt Core-shell Nanoparticles with Controllable Pt Layers Toward Hydrogen Evolution Reaction, Journal of Electroanalytical Chemistry, 819, 442–446.
  • 7. Badawy, W.A., Nady, H., Negem, M., 2014. Cathodic Hydrogen Evolution in Acidic Solutions Using Electrodeposited Nano-Crystalline Ni-Co Cathodes, International Journal of Hydrogen Energy, 39, 10824-10832.
  • 8. Solmaz, R., 2013. Electrochemical Preparation and Characterization of C/Ni-NiIr Composite Electrodes as Novel Cathode Materials for Alkaline Water Electrolysis, International Journal of Hydrogen Energy, 39, 2251-2256.
  • 9. Gupta, S., Patel, N., Miotello, A., Kothari, D. C., 2015. Cobalt-Boride: An Efficient and Robust Electrocatalyst for Hydrogen Evolution Reaction, Journal of Power Sources, 279, 620-625.
  • 10. Casciano, P.N.S., Benevides, R.L., Santana, R.A.C., Correia, A.N., Lima-Neto, P., 2017. Factorial Design in the Electrodeposition of Co-Mo Coatings and Their Evaluations for Hydrogen Evolution Reaction, Journal of Alloys and Compounds, 723, 164-171.
  • 11. Kardaş, G., Yazıcı, B., Erbil, M., 2003. Effect of Some Primary Alcohols on Hydrogen Yield on Platinum Cathode in Chloride Solution, International Journal of Hydrogen Energy, 28, 1213-1218.
  • 12. Solmaz, R., Döner, A., Şahin, İ., Kardaş, G., Yazıcı, B., Erbil, M., 2008. Electrochemical Deposition, Characterization and Application of NiCo Coatings as Effective Cathode Materials for Hydrogen Production, BIES’08-Blacksea Environmental Symposium, Giresun, Turkey.
  • 13. Solmaz, R., Kardaş, G., 2007. Hydrogen Evolution and Corrosion Performance of NiZn Coatings. Energy Conversion and Management, 48, 583-591.
  • 14. Rosalbino, F., Maccio, D., Angelini, E., Saccone, A., Delfino, S., 2005. Electrocatalytic Properties of Fe–R (R = rare earth metal) Crystalline Alloys as Hydrogen Electrodes in Alkaline Water Electrolysis, Journal of Alloys and Compounds, 403, 275-282.
  • 15. Navvaro-Flores, E., Chong, Z., Omanovic, S., 2005. Charactaerization of Ni, NiMo, NiW and NiFe Electroactive Coatings as Electrocatalysts for Hydrogen Evolution in an Acidic Medium, Journal of Molecular Catalysis A: Chemical, 226, 179-197.
  • 16. Elumalai, P., Vasan, H.N., Munichandraiah, N., Shivashankar, S.A., 2002. Kinetics of Hydrogen Evolution on Submicron Size Co, Ni, Pd and Co–Ni Alloy Powder Electrodes by D.C. Polarization and a.c. Impedance Studies, Journal of Applied Electrochemistry, 32, 1005-1010.
  • 17. Solmaz, R., Döner, A., Şahin, I., Yüce, A.O., Kardaş, G., Yazıcı, B., Erbil, M., 2009. The Stability of NiCoZn Electrocatalyst for Hydrogen Evolution Activity in Alkaline Solution During Long-term Electrolysis, International Journal of Hydrogen Energy, 34, 7910-7918.
  • 18. Solmaz, R., Döner, A., Kardaş, G., 2009. The Stability of Hydrogen Evolution Activity and Corrosion Behavior of NiCu Coatings with Long-term Electrolysis in Alkaline Solution, International Journal of Hydrogen Energy, 34, 2089-2094.
  • 19. Birry, L., Lasia, A., 2004. Studies of the Hydrogen Evolution Reaction on Raney Nickel-molybdenum Electrodes. Journal of Applied Electrochemistry, 34, 735-749.

Karbon Keçe Elektrotun Alkali Ortamda Elektrokatalitik Hidrojen Çıkış Etkinliğinin Artırılması

Yıl 2019, Cilt: 34 Sayı: 1, 43 - 50, 31.03.2019
https://doi.org/10.21605/cukurovaummfd.601230

Öz

Bu çalışmada, karbon keçe üzerine bakır, kobalt, kobalt-bakır ve kobalt/platin elektrokimyasal olarak çöktürülmüştür. Hazırlanan elektrotların 1 M KOH çözeltisinde hidrojen gazı çıkışına katalitik etkisi katodik akım-potansiyel eğrileri, elektrokimyasal impedans spektroskopisi (EIS) ve elektroliz yöntemleri kullanılarak incelenmiştir. Hazırlanan elektrotların zamanla kararlılık testi 1 M KOH çözeltisi içinde 2,2x10-3 A m-2’lik akım yoğunluğunda araştırılmıştır. Elde edilen sonuçlara göre karbon keçe üzerine, kobalt, kobalt-bakır ve kobalt/platin çöktürülmesi elektrotun aşırı gerilimini düşürerek hidrojen gazı çıkışını arttırmaktadır. Elektrotun katalitik etkinliği çöktürülen metalin türüne bağlıdır. Katalitik etkinliğin artması keçe elektrotun büyük yüzey alanı ve kobalt ile platinin yüksek katalitik etkinliği ile açıklanabilir.

Kaynakça

  • 1. Wu, J.K., 1992. Electrochemical Method for Studying Hydrogen in Iron, Nickel and Palladium, International Journal of Hydrogen Energy, 17, 917-921.
  • 2. Petrii, O.A., Tsirlia, G.A., 1994. Electrocatalytic Activity Prediction for Hydrogen Electrode Reaction: Intuition, Art, Science, Electrochimica Acta, 39, 1739-1747.
  • 3. Hu, W., Cao, X., Wang, F., Zhag, Y., 1997. A Novel Cathode for Alkaline Water Electrolysis, International Journal of Hydrogen Energy, 22, 621-623.
  • 4. Kawashima, A., Akiyama, E., Habazaki, H., Hashimoto, K., 1997. Characterization of Sputter-deposited Ni-Mo and Ni-W Alloy Electrocatalysts for Hydrogen Evolution in Alkaline Solution, Material Science and Engineering, A226-228, 905-909.
  • 5. Ananth, M.V., Parthasaradhy, N.V., 1997. Hydrogen Evolution Characteristics of Electrodeposited Ni-Zn-Fe Coatings in Alkaline Solutions, International Journal of Hydrogen Energy, 22, 747-751.
  • 6. Yi, S., Ting-Ting, Z., Yue, Z., Wei-Xuan, X., Dong-Rui, Y., Feng-Bin, W., Xing-Hua, X., 2018. Atomic Level Tailoring of the Electrocatalytic Activity of Au-Pt Core-shell Nanoparticles with Controllable Pt Layers Toward Hydrogen Evolution Reaction, Journal of Electroanalytical Chemistry, 819, 442–446.
  • 7. Badawy, W.A., Nady, H., Negem, M., 2014. Cathodic Hydrogen Evolution in Acidic Solutions Using Electrodeposited Nano-Crystalline Ni-Co Cathodes, International Journal of Hydrogen Energy, 39, 10824-10832.
  • 8. Solmaz, R., 2013. Electrochemical Preparation and Characterization of C/Ni-NiIr Composite Electrodes as Novel Cathode Materials for Alkaline Water Electrolysis, International Journal of Hydrogen Energy, 39, 2251-2256.
  • 9. Gupta, S., Patel, N., Miotello, A., Kothari, D. C., 2015. Cobalt-Boride: An Efficient and Robust Electrocatalyst for Hydrogen Evolution Reaction, Journal of Power Sources, 279, 620-625.
  • 10. Casciano, P.N.S., Benevides, R.L., Santana, R.A.C., Correia, A.N., Lima-Neto, P., 2017. Factorial Design in the Electrodeposition of Co-Mo Coatings and Their Evaluations for Hydrogen Evolution Reaction, Journal of Alloys and Compounds, 723, 164-171.
  • 11. Kardaş, G., Yazıcı, B., Erbil, M., 2003. Effect of Some Primary Alcohols on Hydrogen Yield on Platinum Cathode in Chloride Solution, International Journal of Hydrogen Energy, 28, 1213-1218.
  • 12. Solmaz, R., Döner, A., Şahin, İ., Kardaş, G., Yazıcı, B., Erbil, M., 2008. Electrochemical Deposition, Characterization and Application of NiCo Coatings as Effective Cathode Materials for Hydrogen Production, BIES’08-Blacksea Environmental Symposium, Giresun, Turkey.
  • 13. Solmaz, R., Kardaş, G., 2007. Hydrogen Evolution and Corrosion Performance of NiZn Coatings. Energy Conversion and Management, 48, 583-591.
  • 14. Rosalbino, F., Maccio, D., Angelini, E., Saccone, A., Delfino, S., 2005. Electrocatalytic Properties of Fe–R (R = rare earth metal) Crystalline Alloys as Hydrogen Electrodes in Alkaline Water Electrolysis, Journal of Alloys and Compounds, 403, 275-282.
  • 15. Navvaro-Flores, E., Chong, Z., Omanovic, S., 2005. Charactaerization of Ni, NiMo, NiW and NiFe Electroactive Coatings as Electrocatalysts for Hydrogen Evolution in an Acidic Medium, Journal of Molecular Catalysis A: Chemical, 226, 179-197.
  • 16. Elumalai, P., Vasan, H.N., Munichandraiah, N., Shivashankar, S.A., 2002. Kinetics of Hydrogen Evolution on Submicron Size Co, Ni, Pd and Co–Ni Alloy Powder Electrodes by D.C. Polarization and a.c. Impedance Studies, Journal of Applied Electrochemistry, 32, 1005-1010.
  • 17. Solmaz, R., Döner, A., Şahin, I., Yüce, A.O., Kardaş, G., Yazıcı, B., Erbil, M., 2009. The Stability of NiCoZn Electrocatalyst for Hydrogen Evolution Activity in Alkaline Solution During Long-term Electrolysis, International Journal of Hydrogen Energy, 34, 7910-7918.
  • 18. Solmaz, R., Döner, A., Kardaş, G., 2009. The Stability of Hydrogen Evolution Activity and Corrosion Behavior of NiCu Coatings with Long-term Electrolysis in Alkaline Solution, International Journal of Hydrogen Energy, 34, 2089-2094.
  • 19. Birry, L., Lasia, A., 2004. Studies of the Hydrogen Evolution Reaction on Raney Nickel-molybdenum Electrodes. Journal of Applied Electrochemistry, 34, 735-749.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ali Döner

Yayımlanma Tarihi 31 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 34 Sayı: 1

Kaynak Göster

APA Döner, A. (2019). Karbon Keçe Elektrotun Alkali Ortamda Elektrokatalitik Hidrojen Çıkış Etkinliğinin Artırılması. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(1), 43-50. https://doi.org/10.21605/cukurovaummfd.601230
AMA Döner A. Karbon Keçe Elektrotun Alkali Ortamda Elektrokatalitik Hidrojen Çıkış Etkinliğinin Artırılması. cukurovaummfd. Mart 2019;34(1):43-50. doi:10.21605/cukurovaummfd.601230
Chicago Döner, Ali. “Karbon Keçe Elektrotun Alkali Ortamda Elektrokatalitik Hidrojen Çıkış Etkinliğinin Artırılması”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34, sy. 1 (Mart 2019): 43-50. https://doi.org/10.21605/cukurovaummfd.601230.
EndNote Döner A (01 Mart 2019) Karbon Keçe Elektrotun Alkali Ortamda Elektrokatalitik Hidrojen Çıkış Etkinliğinin Artırılması. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34 1 43–50.
IEEE A. Döner, “Karbon Keçe Elektrotun Alkali Ortamda Elektrokatalitik Hidrojen Çıkış Etkinliğinin Artırılması”, cukurovaummfd, c. 34, sy. 1, ss. 43–50, 2019, doi: 10.21605/cukurovaummfd.601230.
ISNAD Döner, Ali. “Karbon Keçe Elektrotun Alkali Ortamda Elektrokatalitik Hidrojen Çıkış Etkinliğinin Artırılması”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34/1 (Mart 2019), 43-50. https://doi.org/10.21605/cukurovaummfd.601230.
JAMA Döner A. Karbon Keçe Elektrotun Alkali Ortamda Elektrokatalitik Hidrojen Çıkış Etkinliğinin Artırılması. cukurovaummfd. 2019;34:43–50.
MLA Döner, Ali. “Karbon Keçe Elektrotun Alkali Ortamda Elektrokatalitik Hidrojen Çıkış Etkinliğinin Artırılması”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 34, sy. 1, 2019, ss. 43-50, doi:10.21605/cukurovaummfd.601230.
Vancouver Döner A. Karbon Keçe Elektrotun Alkali Ortamda Elektrokatalitik Hidrojen Çıkış Etkinliğinin Artırılması. cukurovaummfd. 2019;34(1):43-50.