L-carnitine effects in CCl4-nephrotoxicity: Immunohistochemical evaluation of glomerular nephrin and HIF-1alpha expressions
Yıl 2020,
Cilt: 45 Sayı: 2, 541 - 546, 30.06.2020
Derya Karabulut
,
Emel Öztürk
,
Ali Tuğrul Akin
,
Ayça Lekesizcan
,
Hacı Murat Ünsal
,
Tuğçe Merve Özyazgan
,
Meryem Sayan
Öz
Purpose: In this study, we aimed to demonstrate the effects of L-carnitine after carbontetrachloride (CCl4) toxicity through nephrin and Hypoxia inducible factor-1 alpha (HIF-1α) expressions in the glomerular structure.
Materials and Methods: Forty male Sprague dawley rats were divided into 5 groups with animals in each group. Group I: Control group; 0.2 ml olive oil intraperitoneal (ip) twice weekly, Group II: L-carnitine group; 200 mg/kg L-carnitine (ip) twice a week, Group III: CCl4 group; 0.2 ml CCl4 (ip) twice a week for 6 weeks, Group IV: L-carnitine + CCl4 group, 200 mg/kg ip L-carnitine 24 hours before CCl4 twice a week, Group V: CCl4 + L-carnitine group; 200 mg/kg L-carnitine half an hour after CCl4 twice a week. Immunohistochemical staining was performed on kidney tissue sections to show nephrin and HIF-1α expression. Expression densities of the proteins were measured by ImageJ program.
Results: Nephrin expression was significantly increased in Group III compared to other groups. There was a significant increase in HIF-1α expression only between Group I and Group III. Expression densities of proteins in L-carnitine-treated groups were similar to control.
Conclusion: L-carnitine has both protective and therapeutic effects against CCl4 toxicity in renal glomeruli.
Destekleyen Kurum
Erciyes University BAP Unit
Proje Numarası
TSA-2018-8227
Kaynakça
- References
1. Rahmouni F, Daoud S, Rebai T. Teucrium polium attenuates carbon tetrachloride-induced toxicity in the male reproductive system of rats. Andrologia. 2019;51(2):e13182. Epub 2018/10/26. doi: 10.1111/and.13182. PubMed PMID: 30353557.
2. Berthelot P. Mechanisms and prediction of drug-induced liver disease. Gut. 1973;14(4):332-9. Epub 1973/04/01. doi: 10.1136/gut.14.4.332. PubMed PMID: 4574904; PubMed Central PMCID: PMCPMC1412590.
3. Sahreen S, Khan MR, Khan RA. Ameliorating effect of various fractions of Rumex hastatus roots against hepato- and testicular toxicity caused by CCl4. Oxid Med Cell Longev. 2013;2013:325406. Epub 2013/06/15. doi: 10.1155/2013/325406. PubMed PMID: 23766852; PubMed Central PMCID: PMCPMC3666267.
4. Sahreen S, Khan MR, Khan RA, Alkreathy HM. Cardioprotective role of leaves extracts of Carissa opaca against CCl4 induced toxicity in rats. BMC Res Notes. 2014;7:224. Epub 2014/04/11. doi: 10.1186/1756-0500-7-224. PubMed PMID: 24716654; PubMed Central PMCID: PMCPMC3983670.
5. Khalil I, Ghani M, Khan MR, Akbar F. Evaluation of biological activities and in vivo amelioration of CCl4 induced toxicity in lung and kidney with Abutilon pannosum (G.Forst.) Schltdl. in rat. J Ethnopharmacol. 2019:112395. Epub 2019/11/19. doi: 10.1016/j.jep.2019.112395. PubMed PMID: 31739104.
6. El-Faras AA, Sadek IA, Ali YE, Khalil M, Mussa EB. Protective effects of Vitamin E on CCl4-induced testicular toxicity in male rats. Physiol Int. 2016;103(2):157-68. Epub 2017/06/24. doi: 10.1556/036.103.2016.2.3. PubMed PMID: 28639866.
7. Demirdag K, Bahcecioglu IH, Ozercan IH, Ozden M, Yilmaz S, Kalkan A. Role of L-carnitine in the prevention of acute liver damage induced by carbon tetrachloride in rats. J Gastroenterol Hepatol. 2004;19(3):333-8. Epub 2004/01/30. doi: 10.1111/j.1440-1746.2003.03291.x. PubMed PMID: 14748882.
8. Demiroren K, Dogan Y, Kocamaz H, Ozercan IH, Ilhan S, Ustundag B, et al. Protective effects of L-carnitine, N-acetylcysteine and genistein in an experimental model of liver fibrosis. Clin Res Hepatol Gastroenterol. 2014;38(1):63-72. Epub 2013/11/19. doi: 10.1016/j.clinre.2013.08.014. PubMed PMID: 24239319.
9. Cetinkaya A, Kantarceken B, Bulbuloglu E, Kurutas EB, Ciralik H, Atli Y. The effects of L-carnitine and N-acetylcysteine on carbontetrachloride induced acute liver damage in rats. Bratisl Lek Listy. 2013;114(12):682-8. Epub 2013/12/18. doi: 10.4149/bll_2013_145. PubMed PMID: 24329505.
10. Aleisa AM, Al-Majed AA, Al-Yahya AA, Al-Rejaie SS, Bakheet SA, Al-Shabanah OA, et al. Reversal of cisplatin-induced carnitine deficiency and energy starvation by propionyl-L-carnitine in rat kidney tissues. Clin Exp Pharmacol Physiol. 2007;34(12):1252-9. Epub 2007/11/02. doi: 10.1111/j.1440-1681.2007.04714.x. PubMed PMID: 17973863.
11. Popovic D, Kocic G, Katic V, Jovic Z, Zarubica A, Jankovic Velickovic L, et al. Protective effects of anthocyanins from bilberry extract in rats exposed to nephrotoxic effects of carbon tetrachloride. Chem Biol Interact. 2019;304:61-72. Epub 2019/03/03. doi: 10.1016/j.cbi.2019.02.022. PubMed PMID: 30825423.
12. Sachs N, Sonnenberg A. Cell-matrix adhesion of podocytes in physiology and disease. Nat Rev Nephrol. 2013;9(4):200-10. Epub 2013/01/23. doi: 10.1038/nrneph.2012.291. PubMed PMID: 23338211.
13. Hirabayashi S, Mori H, Kansaku A, Kurihara H, Sakai T, Shimizu F, et al. MAGI-1 is a component of the glomerular slit diaphragm that is tightly associated with nephrin. Lab Invest. 2005;85(12):1528-43. Epub 2005/09/13. doi: 10.1038/labinvest.3700347. PubMed PMID: 16155592.
14. Jones N, New LA, Fortino MA, Eremina V, Ruston J, Blasutig IM, et al. Nck proteins maintain the adult glomerular filtration barrier. J J Am Soc Nephrol. 2009;20(7):1533-43. Epub 2009/05/16. doi: 10.1681/asn.2009010056. PubMed PMID: 19443634; PubMed Central PMCID: PMCPMC2709686.
15. Greka A, Mundel P. Cell biology and pathology of podocytes. Annu Rev Physiol. 2012;74:299-323. Epub 2011/11/08. doi: 10.1146/annurev-physiol-020911-153238. PubMed PMID: 22054238; PubMed Central PMCID: PMCPMC3600372.
16. Furness PN, Hall LL, Shaw JA, Pringle JH. Glomerular expression of nephrin is decreased in acquired human nephrotic syndrome. Nephrol Dial Transplant. 1999;14(5):1234-7. Epub 1999/05/27. doi: 10.1093/ndt/14.5.1234. PubMed PMID: 10344367.
17. Luimula P, Aaltonen P, Ahola H, Palmen T, Holthofer H. Pediatr Res. Pediatric research. 2000;48(6):759-62. Epub 2000/12/05. doi: 10.1203/00006450-200012000-00010. PubMed PMID: 11102543.
18. Narita I, Shimada M, Yamabe H, Kinjo T, Tanno T, Nishizaki K, et al. NF-kappaB-dependent increase in tissue factor expression is responsible for hypoxic podocyte injury. Clin Exp Nephrol. 2016;20(5):679-88. Epub 2015/12/31. doi: 10.1007/s10157-015-1214-z. PubMed PMID: 26715508.
19. Eckardt KU, Bernhardt WM, Weidemann A, Warnecke C, Rosenberger C, Wiesener MS, et al. Role of hypoxia in the pathogenesis of renal disease. Kidney Int Suppl.
2005(99):S46-51. Epub 2005/12/13. doi: 10.1111/j.1523-1755.2005.09909.x. PubMed PMID: 16336576.
20. Karabulut D, Ulusoy HB, Kaymak E, Sonmez MF. Therapeutic effects of pentoxifylline on diabetic heart tissue via NOS. Anatol J Cardiol 2016;16(5):310-5. Epub 2015/10/22. doi: 10.5152/akd.2015.6252. PubMed PMID: 26488377; PubMed Central PMCID: PMCPMC5336777.
21. Luo R, Zhang W, Zhao C, Zhang Y, Wu H, Jin J, et al. Elevated Endothelial Hypoxia-Inducible Factor-1alpha Contributes to Glomerular Injury and Promotes Hypertensive Chronic Kidney Disease. Hypertension. 2015;66(1):75-84. Epub 2015/05/20. doi: 10.1161/hypertensionaha.115.05578. PubMed PMID: 25987665; PubMed Central PMCID: PMCPMC4752003.
22. Alomari G, Al-Trad B, Hamdan S, Aljabali A, Al-Zoubi M, Bataineh N, et al. Gold nanoparticles attenuate albuminuria by inhibiting podocyte injury in a rat model of diabetic nephropathy. Drug Deliv Transl Res. 2019. Epub 2019/10/23. doi: 10.1007/s13346-019-00675-6. PubMed PMID: 31637677.
23. Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83(1):253-307. Epub 2002/12/31. doi: 10.1152/physrev.00020.2002. PubMed PMID: 12506131.
24. Furukawa T, Ohno S, Oguchi H, Hora K, Tokunaga S, Furuta S. Morphometric study of glomerular slit diaphragms fixed by rapid-freezing and freeze-substitution. Kidney Int.
1991;40(4):621-4.
25. Aaltonen P, Luimula P, Astrom E, Palmen T, Gronholm T, Palojoki E, et al. Changes in the expression of nephrin gene and protein in experimental diabetic nephropathy. Lab Invest.
2001;81(9):1185-90. Epub 2001/09/14. doi: 10.1038/labinvest.3780332. PubMed PMID: 11555666.
26. Shukla R, Pandey N, Banerjee S, Tripathi YB. Effect of extract of Pueraria tuberosa on expression of hypoxia inducible factor-1alpha and vascular endothelial growth factor in kidney of diabetic rats. Biomed Pharmacother. 2017;93:276-85. Epub 2017/06/27. doi: 10.1016/j.biopha.2017.06.045. PubMed PMID: 28648975.
27. Sun H-K, Lee YM, Han KH, Kim H-S, Ahn S-H, Han S-Y. Phosphodiesterase inhibitor improves renal tubulointerstitial hypoxia of the diabetic rat kidney. Korean J Intern Med. 2012;27(2):163.
28. Nakuluri K, Mukhi D, Mungamuri SK, Pasupulati AK. Stabilization of hypoxia-inducible factor 1alpha by cobalt chloride impairs podocyte morphology and slit-diaphragm function. J Cell Biochem. 2018. Epub 2018/11/06. doi: 10.1002/jcb.28041. PubMed PMID: 30387200.
29. Nordquist L, Friederich-Persson M, Fasching A, Liss P, Shoji K, Nangaku M, et al. Activation of hypoxia-inducible factors prevents diabetic nephropathy. J Am Soc Nephrol. 2015;26(2):328-38.
30. Dallatu MK, Nwokocha E, Agu N, Myung C, Newaz MA, Garcia G, et al. The Role of Hypoxia-Inducible Factor/Prolyl Hydroxylation Pathway in Deoxycorticosterone Acetate/Salt Hypertension in the Rat. J Hypertens (Los Angel) 2014;3(6). Epub 2015/07/18. doi: 10.4172/2167-1095.1000184. PubMed PMID: 26185735; PubMed Central PMCID: PMCPMC4501485.
31. Kaukinen A, Kuusniemi AM, Lautenschlager I, Jalanko H. Glomerular endothelium in kidneys with congenital nephrotic syndrome of the Finnish type (NPHS1). Nephrol Dial Transplant 2008;23(4):1224-32. Epub 2007/12/01. doi: 10.1093/ndt/gfm799. PubMed PMID: 18048423.
CCl4-nefrotoksisitesinde L-karnitin’in etkileri: Glomeruler nefrin ve HIF-1alfa ekspresyonlarının immunohistokimyasal değerlendirilmesi
Yıl 2020,
Cilt: 45 Sayı: 2, 541 - 546, 30.06.2020
Derya Karabulut
,
Emel Öztürk
,
Ali Tuğrul Akin
,
Ayça Lekesizcan
,
Hacı Murat Ünsal
,
Tuğçe Merve Özyazgan
,
Meryem Sayan
Öz
Amaç: Bu çalışmada glomerül yapısındaki nefrin ve hipoksi indüklenebilir faktör-1alfa ekspresyonları aracılığıyla karbontetraklorid (CCl4) toksisitesi sonrası L-karnitin’in etkilerinin gösterilmesini amaçladık.
Gereç ve Yöntem: 40 adet Sprague dawley erkek sıçan 5 gruba (n=8) ayrıldı. Grup I: Kontrol grubu; 0.2 ml zeytinyağı intraperitoneal (ip) haftada 2 kez, Grup II: L-karnitin grubu; 200 mg/kg L-karnitin (ip) haftada 2 kez, Grup III: CCl4 group; 0.2 ml CCl4 (ip) haftada 2 kez 6 hafta boyunca, Grup IV: L-karnitin + CCl4 grubu, haftada 2 kez CCl4 uygulamasından önce 200 mg/kg ip L-karnitin, Grup V: CCl4 + L-karnitin grubu, haftada 2 kez CCl4 uygulamasından 1 saat sonra 200 mg/kg ip L-karnitin. Böbrek doku kesitlerine nefrin ve HIF-1α ekspresyonunu göstermek için immunohistokimya boyama uygulandı. Proteinlerin ekspresyon yoğunlukları ImageJ programında ölçüldü.
Bulgular: Nefrin ekspresyonu diğer gruplar ile kıyaslandığında Grup III’de anlamlı olarak arttı. HIF-1α ekspresyonu yalnızca Grup I ve Grup III arasında anlamlı şekilde arttı. Proteinlerin ekspresyon yoğunlukları L-karnitin-tedavili gruplarda kontrol grubuna benzerdi.
Sonuç: L-karnitin böbrek glomerulusunda CCl4 toksisitesine karşı hem koruyucu hem tedavi edici etkilere sahiptir.
Proje Numarası
TSA-2018-8227
Kaynakça
- References
1. Rahmouni F, Daoud S, Rebai T. Teucrium polium attenuates carbon tetrachloride-induced toxicity in the male reproductive system of rats. Andrologia. 2019;51(2):e13182. Epub 2018/10/26. doi: 10.1111/and.13182. PubMed PMID: 30353557.
2. Berthelot P. Mechanisms and prediction of drug-induced liver disease. Gut. 1973;14(4):332-9. Epub 1973/04/01. doi: 10.1136/gut.14.4.332. PubMed PMID: 4574904; PubMed Central PMCID: PMCPMC1412590.
3. Sahreen S, Khan MR, Khan RA. Ameliorating effect of various fractions of Rumex hastatus roots against hepato- and testicular toxicity caused by CCl4. Oxid Med Cell Longev. 2013;2013:325406. Epub 2013/06/15. doi: 10.1155/2013/325406. PubMed PMID: 23766852; PubMed Central PMCID: PMCPMC3666267.
4. Sahreen S, Khan MR, Khan RA, Alkreathy HM. Cardioprotective role of leaves extracts of Carissa opaca against CCl4 induced toxicity in rats. BMC Res Notes. 2014;7:224. Epub 2014/04/11. doi: 10.1186/1756-0500-7-224. PubMed PMID: 24716654; PubMed Central PMCID: PMCPMC3983670.
5. Khalil I, Ghani M, Khan MR, Akbar F. Evaluation of biological activities and in vivo amelioration of CCl4 induced toxicity in lung and kidney with Abutilon pannosum (G.Forst.) Schltdl. in rat. J Ethnopharmacol. 2019:112395. Epub 2019/11/19. doi: 10.1016/j.jep.2019.112395. PubMed PMID: 31739104.
6. El-Faras AA, Sadek IA, Ali YE, Khalil M, Mussa EB. Protective effects of Vitamin E on CCl4-induced testicular toxicity in male rats. Physiol Int. 2016;103(2):157-68. Epub 2017/06/24. doi: 10.1556/036.103.2016.2.3. PubMed PMID: 28639866.
7. Demirdag K, Bahcecioglu IH, Ozercan IH, Ozden M, Yilmaz S, Kalkan A. Role of L-carnitine in the prevention of acute liver damage induced by carbon tetrachloride in rats. J Gastroenterol Hepatol. 2004;19(3):333-8. Epub 2004/01/30. doi: 10.1111/j.1440-1746.2003.03291.x. PubMed PMID: 14748882.
8. Demiroren K, Dogan Y, Kocamaz H, Ozercan IH, Ilhan S, Ustundag B, et al. Protective effects of L-carnitine, N-acetylcysteine and genistein in an experimental model of liver fibrosis. Clin Res Hepatol Gastroenterol. 2014;38(1):63-72. Epub 2013/11/19. doi: 10.1016/j.clinre.2013.08.014. PubMed PMID: 24239319.
9. Cetinkaya A, Kantarceken B, Bulbuloglu E, Kurutas EB, Ciralik H, Atli Y. The effects of L-carnitine and N-acetylcysteine on carbontetrachloride induced acute liver damage in rats. Bratisl Lek Listy. 2013;114(12):682-8. Epub 2013/12/18. doi: 10.4149/bll_2013_145. PubMed PMID: 24329505.
10. Aleisa AM, Al-Majed AA, Al-Yahya AA, Al-Rejaie SS, Bakheet SA, Al-Shabanah OA, et al. Reversal of cisplatin-induced carnitine deficiency and energy starvation by propionyl-L-carnitine in rat kidney tissues. Clin Exp Pharmacol Physiol. 2007;34(12):1252-9. Epub 2007/11/02. doi: 10.1111/j.1440-1681.2007.04714.x. PubMed PMID: 17973863.
11. Popovic D, Kocic G, Katic V, Jovic Z, Zarubica A, Jankovic Velickovic L, et al. Protective effects of anthocyanins from bilberry extract in rats exposed to nephrotoxic effects of carbon tetrachloride. Chem Biol Interact. 2019;304:61-72. Epub 2019/03/03. doi: 10.1016/j.cbi.2019.02.022. PubMed PMID: 30825423.
12. Sachs N, Sonnenberg A. Cell-matrix adhesion of podocytes in physiology and disease. Nat Rev Nephrol. 2013;9(4):200-10. Epub 2013/01/23. doi: 10.1038/nrneph.2012.291. PubMed PMID: 23338211.
13. Hirabayashi S, Mori H, Kansaku A, Kurihara H, Sakai T, Shimizu F, et al. MAGI-1 is a component of the glomerular slit diaphragm that is tightly associated with nephrin. Lab Invest. 2005;85(12):1528-43. Epub 2005/09/13. doi: 10.1038/labinvest.3700347. PubMed PMID: 16155592.
14. Jones N, New LA, Fortino MA, Eremina V, Ruston J, Blasutig IM, et al. Nck proteins maintain the adult glomerular filtration barrier. J J Am Soc Nephrol. 2009;20(7):1533-43. Epub 2009/05/16. doi: 10.1681/asn.2009010056. PubMed PMID: 19443634; PubMed Central PMCID: PMCPMC2709686.
15. Greka A, Mundel P. Cell biology and pathology of podocytes. Annu Rev Physiol. 2012;74:299-323. Epub 2011/11/08. doi: 10.1146/annurev-physiol-020911-153238. PubMed PMID: 22054238; PubMed Central PMCID: PMCPMC3600372.
16. Furness PN, Hall LL, Shaw JA, Pringle JH. Glomerular expression of nephrin is decreased in acquired human nephrotic syndrome. Nephrol Dial Transplant. 1999;14(5):1234-7. Epub 1999/05/27. doi: 10.1093/ndt/14.5.1234. PubMed PMID: 10344367.
17. Luimula P, Aaltonen P, Ahola H, Palmen T, Holthofer H. Pediatr Res. Pediatric research. 2000;48(6):759-62. Epub 2000/12/05. doi: 10.1203/00006450-200012000-00010. PubMed PMID: 11102543.
18. Narita I, Shimada M, Yamabe H, Kinjo T, Tanno T, Nishizaki K, et al. NF-kappaB-dependent increase in tissue factor expression is responsible for hypoxic podocyte injury. Clin Exp Nephrol. 2016;20(5):679-88. Epub 2015/12/31. doi: 10.1007/s10157-015-1214-z. PubMed PMID: 26715508.
19. Eckardt KU, Bernhardt WM, Weidemann A, Warnecke C, Rosenberger C, Wiesener MS, et al. Role of hypoxia in the pathogenesis of renal disease. Kidney Int Suppl.
2005(99):S46-51. Epub 2005/12/13. doi: 10.1111/j.1523-1755.2005.09909.x. PubMed PMID: 16336576.
20. Karabulut D, Ulusoy HB, Kaymak E, Sonmez MF. Therapeutic effects of pentoxifylline on diabetic heart tissue via NOS. Anatol J Cardiol 2016;16(5):310-5. Epub 2015/10/22. doi: 10.5152/akd.2015.6252. PubMed PMID: 26488377; PubMed Central PMCID: PMCPMC5336777.
21. Luo R, Zhang W, Zhao C, Zhang Y, Wu H, Jin J, et al. Elevated Endothelial Hypoxia-Inducible Factor-1alpha Contributes to Glomerular Injury and Promotes Hypertensive Chronic Kidney Disease. Hypertension. 2015;66(1):75-84. Epub 2015/05/20. doi: 10.1161/hypertensionaha.115.05578. PubMed PMID: 25987665; PubMed Central PMCID: PMCPMC4752003.
22. Alomari G, Al-Trad B, Hamdan S, Aljabali A, Al-Zoubi M, Bataineh N, et al. Gold nanoparticles attenuate albuminuria by inhibiting podocyte injury in a rat model of diabetic nephropathy. Drug Deliv Transl Res. 2019. Epub 2019/10/23. doi: 10.1007/s13346-019-00675-6. PubMed PMID: 31637677.
23. Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83(1):253-307. Epub 2002/12/31. doi: 10.1152/physrev.00020.2002. PubMed PMID: 12506131.
24. Furukawa T, Ohno S, Oguchi H, Hora K, Tokunaga S, Furuta S. Morphometric study of glomerular slit diaphragms fixed by rapid-freezing and freeze-substitution. Kidney Int.
1991;40(4):621-4.
25. Aaltonen P, Luimula P, Astrom E, Palmen T, Gronholm T, Palojoki E, et al. Changes in the expression of nephrin gene and protein in experimental diabetic nephropathy. Lab Invest.
2001;81(9):1185-90. Epub 2001/09/14. doi: 10.1038/labinvest.3780332. PubMed PMID: 11555666.
26. Shukla R, Pandey N, Banerjee S, Tripathi YB. Effect of extract of Pueraria tuberosa on expression of hypoxia inducible factor-1alpha and vascular endothelial growth factor in kidney of diabetic rats. Biomed Pharmacother. 2017;93:276-85. Epub 2017/06/27. doi: 10.1016/j.biopha.2017.06.045. PubMed PMID: 28648975.
27. Sun H-K, Lee YM, Han KH, Kim H-S, Ahn S-H, Han S-Y. Phosphodiesterase inhibitor improves renal tubulointerstitial hypoxia of the diabetic rat kidney. Korean J Intern Med. 2012;27(2):163.
28. Nakuluri K, Mukhi D, Mungamuri SK, Pasupulati AK. Stabilization of hypoxia-inducible factor 1alpha by cobalt chloride impairs podocyte morphology and slit-diaphragm function. J Cell Biochem. 2018. Epub 2018/11/06. doi: 10.1002/jcb.28041. PubMed PMID: 30387200.
29. Nordquist L, Friederich-Persson M, Fasching A, Liss P, Shoji K, Nangaku M, et al. Activation of hypoxia-inducible factors prevents diabetic nephropathy. J Am Soc Nephrol. 2015;26(2):328-38.
30. Dallatu MK, Nwokocha E, Agu N, Myung C, Newaz MA, Garcia G, et al. The Role of Hypoxia-Inducible Factor/Prolyl Hydroxylation Pathway in Deoxycorticosterone Acetate/Salt Hypertension in the Rat. J Hypertens (Los Angel) 2014;3(6). Epub 2015/07/18. doi: 10.4172/2167-1095.1000184. PubMed PMID: 26185735; PubMed Central PMCID: PMCPMC4501485.
31. Kaukinen A, Kuusniemi AM, Lautenschlager I, Jalanko H. Glomerular endothelium in kidneys with congenital nephrotic syndrome of the Finnish type (NPHS1). Nephrol Dial Transplant 2008;23(4):1224-32. Epub 2007/12/01. doi: 10.1093/ndt/gfm799. PubMed PMID: 18048423.