Research Article
BibTex RIS Cite

Benign ve malign orbital lezyonların ayrımında difüzyon ağırlıklı MRG ve konvansiyonel MRG’nin tanısal değeri

Year 2022, Volume: 47 Issue: 1, 34 - 43, 31.03.2022
https://doi.org/10.17826/cumj.994078

Abstract

Amaç: Bu çalışmanın amacı benign ve malign orbital lezyonların ayrımında difüzyon ağırlıklı görüntüleme (DAG) ve konvansiyonel manyetik rezonans görüntüleme (MRG)’nin rolünü değerlendirmektir.
Gereç ve Yöntem: Orbital lezyonu 43 hasta (27 kadın ve 16 erkek; ortalama yaş: 26,3 ± 28,5), DAG ve konvansiyonel MRG ile değerlendirildi. Lezyonların görünür difüzyon katsayısı (ADC) ölçüldü ve lezyonların maksimum ADC (ADCmaks), ortalama ADC (ADCort), minimum ADC (ADCmin), ADCort değerinin serebral beyaz cevherin ortalama ADC'sine oranı (ADCortoran) ve ADCmin'in serebral beyaz cevherin ortalama ADC’sine oranı (ADCminoran) hesaplandı. Lezyonların T1 ve T2 ağırlıklı görüntüleme özellikleri ve kontrastlanma paternleri de belirlendi. Malign ve benign orbital lezyonların ayrımı için ADC değişkenlerinin ve konvansiyonel MRG özelliklerinin tanısal performansları değerlendirildi.
Bulgular: Malign lezyonların ADCort, ADCmin, ADCortoran ve ADCminoran değerleri, benignlerinkinden anlamlı derecede düşüktü. ADCortoran en yüksek tanısal performansa sahipti; 1,27 sınır değer seçildiğinde duyarlılığı ve özgüllüğü %87,5 ve %70,4 bulundu. Benign ve malign lezyonları ayırt etmek için sınır ADCort değeri 0,97 × 10-3 mm2/s seçilmesi, %75 duyarlılık ve %74 özgüllük ortaya çıkardı. Konvansiyonel MRG özellikleri malign tanı ile ilişkili değildi.
Sonuç: DAG'den elde edilen ADC değerleri, benign ve malign orbital lezyonların ayrımına katkı sağlamaktadır.
Anahtar kelimeler: Difüzyon ağırlıklı görüntüleme, Görünür difüzyon katsayısı, Orbital neoplazi, Manyetik rezonans görüntüleme

References

  • Goh PS, Gi MT, Charlton A, Tan C, Gangadhara Sundar JK, Amrith S. Review of orbital imaging. Eur J Radiol. 2008;66:387–95.
  • Tailor TD, Gupta D, Dalley RW, Keene CD, Anzai Y. Orbital neoplasms in adults: clinical, radiologic, and pathologic review. Radiographics. 2013;33:1739–58.
  • Hu H, Xu X-Q, Liu H, Hong X-N, Shi H-B, Wu F-Y. Orbital benign and malignant lymphoproliferative disorders: Differentiation using semi-quantitative and quantitative analysis of dynamic contrast-enhanced magnetic resonance imaging. Eur J Radiol. 2017;88:88–94.
  • Lemke AJ, Kazi I, Felix R. Magnetic resonance imaging of orbital tumors. Eur Radiol. 2006;16:2207–19.
  • Ben Simon GJ, Annunziata CC, Fink J, Villablanca P, McCann JD, Goldberg RA. Rethinking orbital imaging establishing guidelines for interpreting orbital imaging studies and evaluating their predictive value in patients with orbital tumors. Ophthalmology. 2005;112:2196–207.
  • Xian J, Zhang Z, Wang Z, Li J, Yang B, Man F et al. Value of MR imaging in the differentiation of benign and malignant orbital tumors in adults. Eur Radiol. 2010;20:1692–702.
  • Bekci T, Polat AV, Aslan K, Tomak L, Ceyhan Bilgici M, Danaci M. Diagnostic performance of diffusion-weighted MRI in the diagnosis of ovarian torsion: comparison of torsed and nonaffected ovaries. Clin Imaging. 2016;40:1029–33.
  • Aslan S. Added value of contrast-enhanced and diffusion-weighted MRI data sets for characterization of perianal fistulas; single center experience. Artic Ann Med Res. 2020;27:2763–71.
  • Wang J, Takashima S, Takayama F, Kawakami S, Saito A, Matsushita T et al. Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging. Radiology. 2001;220:621–30.
  • Vandecaveye V, De Keyzer F, Vander Poorten V, Dirix P, Verbeken E, Nuyts S et al. Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiology. 2009;251:134–46.
  • Politi LS, Forghani R, Godi C, Resti AG, Ponzoni M, Bianchi S et al. Ocular adnexal lymphoma: diffusion-weighted mr imaging for differential diagnosis and therapeutic monitoring. Radiology. 2010;256:565–74.
  • Sepahdari AR, Aakalu VK, Setabutr P, Shiehmorteza M, Naheedy JH, Mafee MF. Indeterminate orbital masses: restricted diffusion at MR imaging with echo-planar diffusion-weighted imaging predicts malignancy. Radiology. 2010;256:554–64.
  • Haradome K, Haradome H, Usui Y, Ueda S, Kwee TC, Saito K et al. Orbital lymphoproliferative disorders (OLPDs): value of MR imaging for differentiating orbital lymphoma from benign OPLDs. AJNR Am J Neuroradiol. 2014;35:1976–82.
  • Xu XQ, Hu H, Su GY, Zhang L, Liu H, Hong XN et al. Orbital indeterminate lesions in adults: combined magnetic resonance morphometry and histogram analysis of apparent diffusion coefficient maps for predicting malignancy. Acad Radiol. 2016;23:200–8.
  • Xu XQ, Hu H, Su GY, Liu H, Hong XN, Shi HB et al. Utility of histogram analysis of ADC maps for differentiating orbital tumors. Diagn Interv Radiol. 2016;22:161–7.
  • Razek AAKA, Elkhamary S, Mousa A. Differentiation between benign and malignant orbital tumors at 3-T diffusion MR-imaging. Neuroradiology. 2011;53:517–22.
  • Xu XQ, Hu H, Liu H, Wu JF, Cao P, Shi HB et al. Benign and malignant orbital lymphoproliferative disorders: differentiating using multiparametric MRI at 3.0T. J Magn Reson Imaging. 2017;45:167–76.
  • Jaju A, Rychlik K, Ryan ME. MRI of pediatric orbital masses: role of quantitative diffusion-weighted imaging in differentiating benign from malignant lesions. Clin Neuroradiol. 2020;30:615–24.
  • Maldonado FR, Princich JP, Micheletti L, Toronchik MS, Erripa JI, Rugilo C. Quantitative characterization of extraocular orbital lesions in children using diffusion-weighted imaging. Pediatr Radiol. 2021;51:119-127.
  • Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Radiology. 2015;277:826–32.
  • Sasaki M, Yamada K, Watanabe Y, Matsui M, Ida M, Fujiwara S et al. Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology. 2008;249:624–30.
  • Şerifoğlu İ, Oz İİ, Damar M, Tokgöz Ö, Yazgan Ö, Erdem Z. Diffusion-weighted imaging in the head and neck region: usefulness of apparent diffusion coefficient values for characterization of lesions. Diagn Interv Radiol. 2015;21:208–14.
  • Fatima Z, Ichikawa T, Ishigame K, Motosugi U, Waqar AB, Hori M et al. Orbital masses: the usefulness of diffusion-weighted imaging in lesion categorization. Clin Neuroradiol. 2014;24:129–34.
  • Xu XQ, Hu H, Su GY, Liu H, Shi HB, Wu FY. Diffusion weighted imaging for differentiating benign from malignant orbital tumors: diagnostic performance of the apparent diffusion coefficient based on region of interest selection method. Korean J Radiol. 2016;17:650–6.

Diagnostic value of diffusion-weighted MRI and conventional MRI in the differentiation of benign and malignant orbital lesions

Year 2022, Volume: 47 Issue: 1, 34 - 43, 31.03.2022
https://doi.org/10.17826/cumj.994078

Abstract

Purpose: The aim of this study was to assess the role of diffusion-weighted imaging (DWI) and conventional magnetic resonance imaging (MRI) in the differentiation of benign and malignant orbital lesions.
Materials and Methods: 43 patients (27 women and 16 men; mean age: 26.3±28.5) with orbital lesions were assessed with conventional MRI and DWI. The apparent diffusion coefficient (ADC) of the lesions was measured, and maximum ADC (ADCmax), mean ADC (ADCmean), minimum ADC (ADCmin), the ratio of ADCmean to cerebral white matter ADC (ADCmeanratio), and the ratio of ADCmin to cerebral white matter ADC (ADCminratio) were calculated. T1-weighted and T2-weighted imaging features and contrast enhancement patterns were determined. The diagnostic performances of ADC variables and conventional MRI features for the differentiation of benign and malignant orbital lesions were assessed.
Results: ADCmean, ADCmin, ADCmeanratio, and ADCminratio of the malignant lesions were significantly lower than those of the benign ones . ADCmeanratio had the highest diagnostic performance with a sensitivity and specificity of 87.5% and 70.4% at a threshold of 1.27. Selecting a cut-off ADCmean of 0.97 × 10-3 mm2/s for differentiating benign and malignant lesions revealed 75% sensitivity and 74% specificity. Conventional MRI features were not associated with the malignant diagnosis).
Conclusion: ADC values obtained from DWI contribute to the differentiation of benign and malignant orbital lesions.

References

  • Goh PS, Gi MT, Charlton A, Tan C, Gangadhara Sundar JK, Amrith S. Review of orbital imaging. Eur J Radiol. 2008;66:387–95.
  • Tailor TD, Gupta D, Dalley RW, Keene CD, Anzai Y. Orbital neoplasms in adults: clinical, radiologic, and pathologic review. Radiographics. 2013;33:1739–58.
  • Hu H, Xu X-Q, Liu H, Hong X-N, Shi H-B, Wu F-Y. Orbital benign and malignant lymphoproliferative disorders: Differentiation using semi-quantitative and quantitative analysis of dynamic contrast-enhanced magnetic resonance imaging. Eur J Radiol. 2017;88:88–94.
  • Lemke AJ, Kazi I, Felix R. Magnetic resonance imaging of orbital tumors. Eur Radiol. 2006;16:2207–19.
  • Ben Simon GJ, Annunziata CC, Fink J, Villablanca P, McCann JD, Goldberg RA. Rethinking orbital imaging establishing guidelines for interpreting orbital imaging studies and evaluating their predictive value in patients with orbital tumors. Ophthalmology. 2005;112:2196–207.
  • Xian J, Zhang Z, Wang Z, Li J, Yang B, Man F et al. Value of MR imaging in the differentiation of benign and malignant orbital tumors in adults. Eur Radiol. 2010;20:1692–702.
  • Bekci T, Polat AV, Aslan K, Tomak L, Ceyhan Bilgici M, Danaci M. Diagnostic performance of diffusion-weighted MRI in the diagnosis of ovarian torsion: comparison of torsed and nonaffected ovaries. Clin Imaging. 2016;40:1029–33.
  • Aslan S. Added value of contrast-enhanced and diffusion-weighted MRI data sets for characterization of perianal fistulas; single center experience. Artic Ann Med Res. 2020;27:2763–71.
  • Wang J, Takashima S, Takayama F, Kawakami S, Saito A, Matsushita T et al. Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging. Radiology. 2001;220:621–30.
  • Vandecaveye V, De Keyzer F, Vander Poorten V, Dirix P, Verbeken E, Nuyts S et al. Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiology. 2009;251:134–46.
  • Politi LS, Forghani R, Godi C, Resti AG, Ponzoni M, Bianchi S et al. Ocular adnexal lymphoma: diffusion-weighted mr imaging for differential diagnosis and therapeutic monitoring. Radiology. 2010;256:565–74.
  • Sepahdari AR, Aakalu VK, Setabutr P, Shiehmorteza M, Naheedy JH, Mafee MF. Indeterminate orbital masses: restricted diffusion at MR imaging with echo-planar diffusion-weighted imaging predicts malignancy. Radiology. 2010;256:554–64.
  • Haradome K, Haradome H, Usui Y, Ueda S, Kwee TC, Saito K et al. Orbital lymphoproliferative disorders (OLPDs): value of MR imaging for differentiating orbital lymphoma from benign OPLDs. AJNR Am J Neuroradiol. 2014;35:1976–82.
  • Xu XQ, Hu H, Su GY, Zhang L, Liu H, Hong XN et al. Orbital indeterminate lesions in adults: combined magnetic resonance morphometry and histogram analysis of apparent diffusion coefficient maps for predicting malignancy. Acad Radiol. 2016;23:200–8.
  • Xu XQ, Hu H, Su GY, Liu H, Hong XN, Shi HB et al. Utility of histogram analysis of ADC maps for differentiating orbital tumors. Diagn Interv Radiol. 2016;22:161–7.
  • Razek AAKA, Elkhamary S, Mousa A. Differentiation between benign and malignant orbital tumors at 3-T diffusion MR-imaging. Neuroradiology. 2011;53:517–22.
  • Xu XQ, Hu H, Liu H, Wu JF, Cao P, Shi HB et al. Benign and malignant orbital lymphoproliferative disorders: differentiating using multiparametric MRI at 3.0T. J Magn Reson Imaging. 2017;45:167–76.
  • Jaju A, Rychlik K, Ryan ME. MRI of pediatric orbital masses: role of quantitative diffusion-weighted imaging in differentiating benign from malignant lesions. Clin Neuroradiol. 2020;30:615–24.
  • Maldonado FR, Princich JP, Micheletti L, Toronchik MS, Erripa JI, Rugilo C. Quantitative characterization of extraocular orbital lesions in children using diffusion-weighted imaging. Pediatr Radiol. 2021;51:119-127.
  • Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Radiology. 2015;277:826–32.
  • Sasaki M, Yamada K, Watanabe Y, Matsui M, Ida M, Fujiwara S et al. Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology. 2008;249:624–30.
  • Şerifoğlu İ, Oz İİ, Damar M, Tokgöz Ö, Yazgan Ö, Erdem Z. Diffusion-weighted imaging in the head and neck region: usefulness of apparent diffusion coefficient values for characterization of lesions. Diagn Interv Radiol. 2015;21:208–14.
  • Fatima Z, Ichikawa T, Ishigame K, Motosugi U, Waqar AB, Hori M et al. Orbital masses: the usefulness of diffusion-weighted imaging in lesion categorization. Clin Neuroradiol. 2014;24:129–34.
  • Xu XQ, Hu H, Su GY, Liu H, Shi HB, Wu FY. Diffusion weighted imaging for differentiating benign from malignant orbital tumors: diagnostic performance of the apparent diffusion coefficient based on region of interest selection method. Korean J Radiol. 2016;17:650–6.
There are 24 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research
Authors

Mesut Ozturk 0000-0003-4059-2656

Aslı Tanrıvermiş Sayıt 0000-0003-2861-156X

Cetin Çelenk 0000-0002-6078-7525

Volkan Yeter 0000-0002-0357-9009

Publication Date March 31, 2022
Acceptance Date November 14, 2021
Published in Issue Year 2022 Volume: 47 Issue: 1

Cite

MLA Ozturk, Mesut et al. “Diagnostic Value of Diffusion-Weighted MRI and Conventional MRI in the Differentiation of Benign and Malignant Orbital Lesions”. Cukurova Medical Journal, vol. 47, no. 1, 2022, pp. 34-43, doi:10.17826/cumj.994078.